In vitro transcription (IVT) reaction is an RNA polymerase-catalyzed production of messenger RNA (mRNA) from DNA template, and the unit operation with highest cost of goods in the mRNA drug substance production process. To decrease the cost of mRNA production, reagents should be optimally utilized. Due to the catalytic, multicomponent nature of the IVT reaction, optimization is a multi-factorial problem, ideally suited to design-of-experiment approach for optimization and identification of design space.
View Article and Find Full Text PDFThe COVID-19 pandemic triggered an unprecedented rate of development of messenger ribonucleic acid (mRNA) vaccines, which are produced by in vitro transcription reactions. The latter has been the focus of intense development to increase productivity and decrease cost. Optimization of in vitro transcription (IVT) depends on understanding the impact of individual reagents on the kinetics of mRNA production and the consumption of building blocks, which is hampered by slow, low-throughput, end-point analytics.
View Article and Find Full Text PDF