. Normal function of the vestibular system can be disturbed using a noninvasive technique called electrical vestibular stimulation (EVS), which alters a person's sense of balance and causes false sensations of movement. EVS has been widely used to study the function of the vestibular system, and it has recently gained interest as a therapeutic tool to improve postural stability and help those suffering from vestibular dysfunction.
View Article and Find Full Text PDFBackground: Virtually everyone is exposed to power-frequency MF (50/60 Hz), inducing in our body electric fields and currents, potentially modulating brain function. MF-induced electric fields within the central nervous system can generate flickering visual perceptions (magnetophosphenes), which form the basis of international MF exposure guidelines and recommendations protecting workers and the general public. However, magnetophosphene perception thresholds were estimated 40 years ago in a small, unreplicated study with significant uncertainties and leaving open the question of the involved interaction site.
View Article and Find Full Text PDFIn recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo-ocular reflex. Other hypotheses have largely been discarded.
View Article and Find Full Text PDFPhys Med Biol
January 2022
Sensations of flickering light produced by time-varying magnetic fields or electric currents are called magneto- or electrophosphenes. Phosphene thresholds have been used in international guidelines and standards as an estimate of the thresholds of exposure that produce effects in the central nervous system (CNS). However, the estimated threshold values have a large range of uncertainty.
View Article and Find Full Text PDF