A water extract (CAW) of the Ayurvedic plant administered in drinking water has been shown to improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice are compared. Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.
View Article and Find Full Text PDFWe have previously reported that a water extract (CAW) of the Ayurvedic plant administered in drinking water can improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here we compared the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice. Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.
View Article and Find Full Text PDF(CA) is a culinary vegetable and well-known functional food that is widely used as a medicinal herb and dietary supplement. CA is rich in pentacyclic triterpenes (TTs), including asiaticoside (AS), madecassoside (MS) and the related aglycones asiatic acid (AA), madecassic acid (MA). Traditionally, TTs have been associated with the bioactivity and health promoting effect of CA.
View Article and Find Full Text PDFBotanical products are frequently sold as dietary supplements and their use by the public is increasing in popularity. However, scientific evaluation of their medicinal benefits presents unique challenges due to their chemical complexity, inherent variability, and the involvement of multiple active components and biological targets. Translation away from preclinical models, and developing an optimized, reproducible botanical product for use in clinical trials, presents particular challenges for phytotherapeutic agents compared to single chemical entities.
View Article and Find Full Text PDFThe dietary supplement industry is rapidly growing yet, a recent study revealed that up to 60% of supplements may have substituted ingredients, some of which can be harmful contaminants or additives. When ingredients cannot be verified morphologically or biochemically, DNA barcoding complemented with a molecular phylogenetic analysis can be a powerful method for species authentication. We employed a molecular phylogenetic analysis for species authentication of the commonly used fungal supplement, reishi (Ganoderma lingzhi), by amplifying and sequencing the nuclear ribosomal internal transcribed spacer regions (ITS) with genus-specific primers.
View Article and Find Full Text PDFNeuropathy target esterase (NTE) or patatin-like phospholipase domain containing 6 (PNPLA6) was first linked with a neuropathy occurring after organophosphate poisoning and was later also found to cause complex syndromes when mutated, which can include mental retardation, spastic paraplegia, ataxia, and blindness. NTE/PNPLA6 is widely expressed in neurons but experiments with its Drosophila orthologue Swiss-cheese (SWS) suggested that it may also have glial functions. Investigating whether NTE/PNPLA6 is expressed in glia, we found that NTE/PNPLA6 is expressed by Schwann cells in the sciatic nerve of adult mice with the most prominent expression in nonmyelinating Schwann cells.
View Article and Find Full Text PDFIncreased amyloid-beta precursor protein (A beta PP) and amyloid-beta (A beta) accumulation appear to be upstream steps in the pathogenesis of sporadic inclusion-body myositis (s-IBM). BACE1, participating in A beta production is also increased in s-IBM muscle fibers. Nogo-B and Nogo-A belong to a family of integral membrane reticulons, and Nogo-B binding to BACE1 blocks BACE1 access to A beta PP, decreasing A beta production.
View Article and Find Full Text PDFSporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients.
View Article and Find Full Text PDFAmyloid-beta precursor protein (AbetaPP) and its fragment amyloid-beta (Abeta) are increased in s-IBM muscle fibers and appear to play an important role in the pathogenic cascade. alphaB-Crystallin (alphaBC) was shown immunohistochemically to be accumulated in s-IBM muscle fibers, but the stressor(s) influencing alphaBC accumulation was not identified. We now demonstrate, using our experimental IBM model based on genetic overexpression of AbetaPP into cultured normal human muscle fibers, that: (1) AbetaPP overexpression increased alphaBC 3.
View Article and Find Full Text PDFHerp is a stress-response protein localized in the endoplasmic reticulum (ER) membrane. Herp was proposed to improve ER-folding, decrease ER protein load, and participate in ER-associated degradation (ERAD). Intra-muscle-fiber ubiquitinated multiprotein-aggregates containing, among other proteins, either amyloid-beta (Abeta) or phosphorylated tau are characteristic of sporadic inclusion-body myositis (s-IBM).
View Article and Find Full Text PDFThe 26S proteasome system is involved in eliminating various proteins, including ubiquitinated misfolded/unfolded proteins, and its inhibition results in cellular accumulation of protein aggregates. Intramuscle-fiber ubiquitinated multiprotein-aggregates are characteristic of sporadic inclusion-body myositis (s-IBM) muscle fibers. Two major types of aggregates exist, containing either amyloid-beta (Abeta) or phosphorylated tau (p-tau).
View Article and Find Full Text PDFMyostatin is a negative regulator of muscle mass and strength. Sporadic inclusion-body myositis (s-IBM) is the most common degenerative muscle disease of older persons and is characterized by pronounced muscle wasting. s-IBM is of unknown etiology and pathogenesis, and it lacks definitive treatment.
View Article and Find Full Text PDFProteins in the endoplasmic reticulum (ER) require an efficient system of molecular chaperones whose role is to assure their proper folding and to prevent accumulation of unfolded proteins. The response of cells to accumulation of unfolded proteins in the ER is termed "unfolded protein response" (UPR). UPR is a functional mechanism by which cells attempt to protect themselves against ER stress, resulting from the accumulation of the unfolded/misfolded proteins.
View Article and Find Full Text PDFCultured muscle fibers (CMF) from a patient with inclusion-body myositis (IBM) and cardiac amyloidosis associated with the transthyretin (TTR) Val122Ile mutation contained aspects of the IBM phenotype: vacuolation, congophilic inclusions, and clusters of immunocolocalizing amyloid beta-peptide (Abeta) and TTR accumulations. These abnormalities are never present in normal human CMF. These perturbations were greatly increased after Abeta precursor protein gene transfer.
View Article and Find Full Text PDFCystatin C (CC), an endogenous cysteine protease inhibitor, is accumulated within amyloid-beta (A beta) amyloid deposits in Alzheimer's disease (AD) brain and was proposed to play a role in the AD pathogenesis. Because the chemo-morphologic muscle phenotype of sporadic inclusion-body myositis (s-IBM) has several similarities with the phenotype of AD brain, including abnormal accumulation of A beta deposits, we studied expression and localization of CC in muscle biopsies of 10 s-IBM, and 16 disease- and five normal-control muscle biopsies. Physical interaction of CC with amyloid-beta precursor protein (A beta PP) was studied by a combined immunoprecipitation/immunoblotting technique in the s-IBM muscle biopsies and in A beta PP-overexpressing cultured human muscle fibers.
View Article and Find Full Text PDFBACE1 and BACE2 are recently discovered enzymes participating in processing of amyloid beta precursor protein (AbetaPP). Their discovery is contributing importantly to understanding the mechanism of amyloid-beta generation, and hence the pathogenesis of Alzheimer's disease (AD). Sporadic inclusion-body myositis (s-IBM) and hereditary inclusion-body myopathy (h-IBM) are progressive muscle diseases in which overproduction of AbetaPP and accumulation of its presumably toxic proteolytic product amyloid-beta (Abeta) in abnormal muscle fibers appear to play an important upstream role in the pathogenic cascade.
View Article and Find Full Text PDF