Publications by authors named "Janis Burt"

Background: Ischemic preconditioning induces lateralization and dephosphorylation of Connexin 43 (Cx43). However, the Cx43 protein that remains at intercalated disks may be phosphorylated by casein kinase 1 (CK1) and protein kinase C (PKC), and both kinases provide cardioprotection from further ischemic injury. Here we explore the channel characteristics of a Cx43 mutant mimicking preconditioning by CK1 and PKC phosphorylation.

View Article and Find Full Text PDF

Objectives: Particulate Matter (PM) air pollution is known to exacerbate cardiopulmonary diseases. We previously demonstrated that PM mediates endothelial injury and barrier disruption by modulating the endothelial cytoskeleton and cell-cell junctions, but the effects of PM exposure on cell-cell communication and gap junction activity are still unknown.

Methods: This study focused on the characterization of PM-regulated endothelial dysfunction through connexin 43 (Cx43), the most abundant gap junction protein expressed in lung endothelial cells (ECs), using cultured human lung endothelial cells and a well-characterized PM sample.

View Article and Find Full Text PDF

Control of vascular cell growth responses is critical for development and maintenance of a healthy vasculature. Connexins - the proteins comprising gap junction channels - are key regulators of cell growth in diseases such as cancer, but their involvement in controlling cell growth in the vasculature is less well appreciated. Connexin37 (Cx37) is one of four connexin isotypes expressed in the vessel wall.

View Article and Find Full Text PDF

Connexin 37 (Cx37; protein product of ) expression profoundly suppresses proliferation of rat insulinoma (Rin) cells in a manner dependent on gap junction channel (GJCh) functionality and the presence and phosphorylation status of its C-terminus (CT). In Rin cells, growth is arrested upon induced Cx37 expression and serine 319 (S319) is frequently phosphorylated. Here, we show that preventing phosphorylation at this site (alanine substitution; S319A) relieved Cx37 of its growth-suppressive effect whereas mimicking phosphorylation at this site (aspartate substitution; S319D) enhanced the growth-suppressive properties of Cx37.

View Article and Find Full Text PDF

Connexin (Cx) mimetic peptides derived from extracellular loop II sequences (e.g., Gap27: SRPTEKTIFII; Peptide5: VDCFLSRPTEKT) have been used as reversible, Cx-specific blockers of hemichannel (HCh) and gap junction channel (GJCh) function.

View Article and Find Full Text PDF

Differential phosphorylation of the carboxyl-terminus of connexin 37 (Cx37-CT) regulates phenotypic switching between cell growth phenotypes (cell death, cell cycle arrest, proliferation). The specific phosphorylation events in the Cx37-CT that are necessary for these growth regulatory effects are currently unknown. Through the combined use of deletion and site specific (de)phospho-mimetic Cx37-CT mutants, our data suggest a phosphorylation-dependent interaction between the mid-tail (aa 273⁻317) and end-tail (aa 318⁻333) portions of the Cx37-CT that regulates cell survival.

View Article and Find Full Text PDF

Connexin 43 (Cx43), a gap junction protein seemingly fit to support cardiac impulse propagation and synchronic contraction, is phosphorylated in normoxia by casein kinase 1 (CK1). However, during cardiac ischemia or pressure overload hypertrophy, this phosphorylation fades, Cx43 abundance decreases at intercalated disks and increases at myocytes' lateral borders, and the risk of arrhythmia rises. Studies in wild-type and transgenic mice indicate that enhanced CK1-phosphorylation of Cx43 protects from arrhythmia, while dephosphorylation precedes arrhythmia vulnerability.

View Article and Find Full Text PDF

Connexin (Cx) mimetic peptides (e.g., Gap27: SRPTEKTIFII; Peptide5: VDCFLSRPTEKT) reversibly inhibit hemichannel (HCh) and gap junction channel (GJCh) function in a concentration- and time-dependent manner (HCh: ~5 µM, <1 h; GJCh: ~100 µM, > 1 h).

View Article and Find Full Text PDF
Article Synopsis
  • * Fluid shear stress at arterial flow levels activates NOTCH signaling, increasing levels of GJA4 (Cx37) and the cell cycle inhibitor CDKN1B (p27), which are essential for proper endothelial growth control and arterial identity.
  • * Disruption of this signaling pathway leads to excessive endothelial cell proliferation and loss of arterial characteristics, while restoring GJA4 or CDKN1B levels can correct these issues, potentially guiding future advancements in vascular regeneration and engineering.
View Article and Find Full Text PDF

Growth suppression mediated by connexin 37 (Cx37; also known as GJA4) requires interaction between its C-terminus and functional pore-forming domain. Using rat insulinoma cells, we show that Cx37 induces cell death and cell cycle arrest, and slowed cell cycling. Whether differential phosphorylation might regulate intramolecular interactions, and consequently the growth-suppressive phenotype, is unknown.

View Article and Find Full Text PDF

Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury.

View Article and Find Full Text PDF

Separate connexin domains partake in proposed gating mechanisms of gap junction channels. The amino-terminus (NT) domains, which contribute to voltage sensing, may line the channel's cytoplasmic-facing funnel surface, stabilize the channel's overall structure through interactions with the transmembrane domains and each other, and integrate to form a compound particle to gate the channel closed. Interactions of the carboxyl-terminus (CT) and cytoplasmic loop (CL) domains underlie voltage- and low pH-triggered channel closure.

View Article and Find Full Text PDF

Connexin (Cx) 37 suppresses vascular and cancer cell proliferation. The C terminus and a channel able to function are necessary, and neither by itself is sufficient, for Cx37 to mediate growth suppression. Cx37 supports transmembrane and intercellular signaling by forming functional hemichannels (HCs) and gap junction channels (GJCs), respectively.

View Article and Find Full Text PDF

This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs.

View Article and Find Full Text PDF

Background: Varying strategies are currently being evaluated to develop tissue-engineered constructs for the treatment of ischemic heart disease. This study examines an angiogenic and biodegradable cardiac construct seeded with neonatal cardiomyocytes for the treatment of chronic heart failure (CHF).

Methods: We evaluated a neonatal cardiomyocyte (NCM)-seeded 3-dimensional fibroblast construct (3DFC) in vitro for the presence of functional gap junctions and the potential of the NCM-3DFC to restore left ventricular (LV) function in an in vivo rat model of CHF at 3 weeks after permanent left coronary artery ligation.

View Article and Find Full Text PDF

Connexin 37 (Cx37) suppresses cell proliferation when expressed in rat insulinoma (Rin) cells, an effect also manifest in vivo during vascular development and in response to tissue injury. Mutant forms of Cx37 with nonfunctional channels but normally localized, wild-type carboxy termini are not growth suppressive. Here we determined whether the carboxy-terminal (CT) domain is required for Cx37-mediated growth suppression and whether the Cx37 pore-forming domain can be replaced with the Cx43 pore-forming domain and still retain growth-suppressive properties.

View Article and Find Full Text PDF

Recently, we reported that recovery of tissue perfusion in the ischemic hindlimb was reduced, inflammatory response increased, and survival of distal limb tissue compromised in connexin 40 (Cx40)-deficient (Cx40(-/-)) mice. Here we evaluate whether genotype-specific differences in tissue perfusion, native vascular density, arteriogenesis, blood pressure, and chronic ANG II type 1 receptor (AT1R) activation contribute to poor recovery of ischemic hindlimb tissue in Cx40(-/-) mice. Hindlimb ischemia was induced in wild-type (WT), Cx40(-/-), and losartan-treated Cx40(-/-) mice by using surgical procedures that either maintained (mild surgery) or compromised (severe surgery) perfusion of major collateral vessels supplying the distal limb.

View Article and Find Full Text PDF

Objective: The focus of this study was to investigate the role of connexin (Cx) 45 in endothelial-induced mural cell differentiation.

Methods And Results: We created mural cell precursors that stably express only Cx45 in Cx43-deficient mesenchymal cells (ReCx45), and used our in vitro model of blood vessel assembly to assess the capacity of this Cx to support endothelial-induced mural cell differentiation. Lucifer Yellow dye injection and dual whole-cell patch clamping revealed that functional gap junctions exhibiting properties of Cx45-containing channels formed among ReCx45 transfectants, and between ReCx45 and endothelial cells.

View Article and Find Full Text PDF

Although a functional pore domain is required for connexin 37 (Cx37)-mediated suppression of rat insulinoma (Rin) cell proliferation, it is unknown whether functional hemichannels would be sufficient or if Cx37 gap junction channels are required for growth suppression. To test this possibility, we targeted extracellular loop cysteines for mutation, expecting that the mutated protein would retain hemichannel, but not gap junction channel, functionality. Cysteines at positions 61 and 65 in the first extracellular loop of Cx37 were mutated to alanine and the mutant protein (Cx37-C61,65A) expressed in Rin cells.

View Article and Find Full Text PDF

Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40.

View Article and Find Full Text PDF

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio.

View Article and Find Full Text PDF

The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation.

View Article and Find Full Text PDF

Background/aims: Ischemia induced by large-vessel obstruction or vascular injury induces a complex cascade of vasodilatory, remodeling and inflammatory pathways; coordination of these processes by vascular endothelium is likely to involve endothelial gap junctions. Vascular endothelium predominantly expresses two connexin (Cx) isoforms: Cx37 and Cx40. The relevance of these Cxs to postischemic limb recovery remains unclear.

View Article and Find Full Text PDF

The unique contributions of connexin (Cx)37 and Cx40, gap junction-forming proteins that are coexpressed in vascular endothelium, to the recovery of tissues from ischemic injury are unknown. We recently reported that Cx37-deficient (Cx37(-/-)) animals recovered ischemic hindlimb function more quickly and to a greater extent than wild-type (WT) or Cx40(-/-) animals, suggesting that Cx37 limits recovery in the WT animal. Here, we tested the hypothesis that enhanced angiogenesis, arteriogenesis, and vasculogenesis contribute to improved postischemic hindlimb recovery in Cx37(-/-) animals.

View Article and Find Full Text PDF