Publications by authors named "Janine de Randamie"

Background And Aims: We recently identified lysosomal acid lipase (LAL) deficiency, a recessive disease caused by mutations in LIPA, in 3 patients with a clinical diagnosis of familial hypercholesterolemia (FH). We aimed to determine the prevalence of LIPA mutations among individuals with a clinical FH diagnosis.

Methods: In 276 patients with phenotypic FH, in whom no genetic basis for their phenotype was found, LIPA was sequenced.

View Article and Find Full Text PDF

Autosomal Dominant Hypercholesterolemia (ADH) is caused by LDLR and APOB mutations. However, genetically diagnosed ADH patients do not always exhibit the expected hypercholesterolemic phenotype. Of 4,669 genetically diagnosed ADH patients, identified through the national identification screening program for ADH, 75 patients (1.

View Article and Find Full Text PDF

Background: Thyroid hormone is prerequisite for proper fetal and postnatal neurodevelopment, growth, and metabolism. Although much progress has been made in the characterization of genes implicated in thyroid development and function, the majority of genes involved in this process are still unknown. We have previously applied serial analysis of gene expression (SAGE) to identify novel genes preferentially expressed in the thyroid, and this has resulted in the characterization of DUOX2 and IYD (also known as DEHAL1), two genes encoding essential enzymes in the production of thyroid hormone.

View Article and Find Full Text PDF

Context: The recent cloning of the human iodotyrosine deiodinase (IYD) gene enables the investigation of iodotyrosine dehalogenase deficiency, a form a primary hypothyroidism resulting from iodine wasting, at the molecular level.

Objective: In the current study, we identify the genetic basis of dehalogenase deficiency in a consanguineous family.

Results: Using HPLC tandem mass spectrometry, we developed a rapid, selective, and sensitive assay to detect 3-monoiodo-l-tyrosine and 3,5-diodo-l-tyrosine in urine and cell culture medium.

View Article and Find Full Text PDF

Background: Thyroid hormone is crucial for brain development during foetal and neonatal life. In very preterm infants, transient low levels of plasma T4 and T3 are commonly found, a phenomenon referred to as transient hypothyroxinaemia of prematurity. We investigated whether breast milk is a substantial resource of thyroid hormone for very preterm neonates and can alleviate transient hypothyroxinaemia.

View Article and Find Full Text PDF