Early rehabilitation in the acute phase of stroke, that bears unique neuroplastic properties, is the current standard to reduce disability. Anodal transcranial direct current stimulation can augment neurorehabilitation in chronic stroke. Studies in the acute phase are sparse and held back by inconclusive preclinical data pointing towards potential negative interaction of the excitability increasing tDCS modality with stroke-induced glutamate toxicity.
View Article and Find Full Text PDFMicroglia are essential contributors to synaptic transmission and stability and communicate with neurons via the fractalkine pathway. Transcranial direct current stimulation [(t)DCS], a form of non-invasive electrical brain stimulation, modulates cortical excitability and promotes neuroplasticity, which has been extensively demonstrated in the motor cortex and for motor learning. The role of microglia and their fractalkine receptor CX3CR1 in motor cortical neuroplasticity mediated by DCS or motor learning requires further elucidation.
View Article and Find Full Text PDFBackground And Purpose: Transcranial direct current stimulation (DCS) structurally and functionally modulates neuronal networks and microglia dynamics. Neurovascular coupling adapts regional cerebral blood flow to neuronal activity and metabolic demands.
Methods: In this study, we examined effects of anodal DCS on vessel morphology, blood flow parameters, permeability of cortical microvasculature, and perivascular microglia motility by time-lapse two-photon microscopy in anaesthetized mice.
IEEE Trans Neural Syst Rehabil Eng
October 2021
Motor impaired patients performing repetitive motor tasks often reveal large single-trial performance variations. Based on a data-driven framework, we extracted robust oscillatory brain states from pre-trial intervals, which are predictive for the upcoming motor performance on the level of single trials. Based on the brain state estimate, i.
View Article and Find Full Text PDFBackground: Transcranial direct current stimulation [(t)DCS], modulates cortical excitability and promotes neuroplasticity. Microglia has been identified to respond to electrical currents as well as neuronal activity, but its response to DCS is mostly unknown.
Objective: This study addresses effects of DCS applied in vivo to the sensorimotor cortex on physiological microglia properties and neuron-microglia communication.
Background: Non-invasive direct current stimulation (DCS) of the brain induces functional plasticity in vitro and facilitates motor learning across species. The effect of DCS on structural synaptic plasticity is currently unknown.
Objective: This study addresses the effects and the underlying mechanisms of anodal DCS on structural plasticity and morphology of dendritic spines in the sensorimotor cortex (M1/S1).
Schizophrenia is a severe neurodevelopmental psychiatric affliction manifested behaviorally at late adolescence/early adulthood. Current treatments comprise antipsychotics which act solely symptomatic, are limited in their effectiveness and often associated with side-effects. We here report that application of non-invasive transcranial direct current stimulation (tDCS) during adolescence, prior to schizophrenia-relevant behavioral manifestation, prevents the development of positive symptoms and related neurobiological alterations in the maternal immune stimulation (MIS) model of schizophrenia.
View Article and Find Full Text PDFGraph theoretical functional magnetic resonance imaging (fMRI) studies have demonstrated that brain networks reorganize significantly during motor skill acquisition, yet the associations between motor learning ability, brain network features, and the underlying biological mechanisms remain unclear. In the current study, we applied a visually guided sequential pinch force learning task and graph theoretical analyses to investigate the associations between short-term motor learning ability and resting-state brain network metrics in 60 healthy subjects. We further probed the test-retest reliability ( = 26) and potential effects of the -methyl-d-aspartate (NMDA) antagonist ketamine ( = 19) in independent healthy volunteers.
View Article and Find Full Text PDFBackground: Motor training alone or combined with transcranial direct current stimulation (tDCS) positioned over the motor cortex (M1) improves motor function in chronic stroke. Currently, understanding of how tDCS influences the process of motor skill learning after stroke is lacking.
Objective: To assess the effects of tDCS on the stages of motor skill learning and on generalization to untrained motor function.
Transcranial electrical brain stimulation can modulate cortical excitability and plasticity in humans and rodents. The most common form of stimulation in humans is transcranial direct current stimulation (tDCS). Less frequently, transcranial alternating current stimulation (tACS) or transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range, is used.
View Article and Find Full Text PDFRestorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex.
View Article and Find Full Text PDFMotor skills are required for activities of daily living. Transcranial direct current stimulation (tDCS) applied in association with motor skill learning has been investigated as a tool for enhancing training effects in health and disease. Here, we review the published literature investigating whether tDCS can facilitate the acquisition, retention or adaptation of motor skills.
View Article and Find Full Text PDFSleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep-wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation.
View Article and Find Full Text PDFFront Cell Neurosci
August 2016
Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain.
View Article and Find Full Text PDFThis review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk.
View Article and Find Full Text PDFAcetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease.
View Article and Find Full Text PDFWe propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories.
View Article and Find Full Text PDFNon-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects.
View Article and Find Full Text PDFThe synaptic plasticity hypothesis of major depressive disorder (MDD) posits that alterations in synaptic plasticity represent a final common pathway underlying the clinical symptoms of the disorder. This study tested the hypotheses that patients with MDD show an attenuation of cortical synaptic long-term potentiation (LTP)-like plasticity in comparison with healthy controls, and that this attenuation recovers after remission. Cortical synaptic LTP-like plasticity was measured using a transcranial magnetic stimulation protocol, ie, paired associative stimulation (PAS), in 27 in-patients with MDD according to ICD-10 criteria and 27 sex- and age-matched healthy controls.
View Article and Find Full Text PDFLTP-like plasticity measured by visual evoked potentials (VEP) can be induced in the intact human brain by presenting checkerboard reversals. Also associated with LTP-like plasticity, around two third of participants respond to transcranial magnetic stimulation (TMS) with a paired-associate stimulation (PAS) protocol with a potentiation of their motor evoked potentials. LTP-like processes are also required for verbal and motor learning tasks.
View Article and Find Full Text PDFObjective: Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation (TMS) paradigm to induce synaptic long-term potentiation (LTP)-like plasticity in the intact human brain. The PAS effect is reduced in Alzheimer's dementia (AD) but has not yet been assessed in patients with mild cognitive impairment (MCI).
Methods: PAS was assessed in a group of 24 MCI patients and 24 elderly controls.
The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves error-dependent as well as reinforcement and strategic mechanisms, is not completely understood.
View Article and Find Full Text PDF