ADP-glucose pyrophosphorylase (AGPase) is an important enzyme in starch synthesis and previous studies showed that the heat lability of this enzyme is a determinant to starch synthesis in the maize endosperm and, in turn, seed yield. Here, amino acids in the AGPase endosperm small subunit with high B-factors were mutagenized and individual changes enhancing heat stability and/or kinetic parameters in an expression system were chosen. Individual mutations were combined and analyzed.
View Article and Find Full Text PDFCrop improvement programs focus on characteristics that are important for plant productivity. Typically genes underlying these traits are identified and stacked to create improved cultivars. Hence, identification of valuable traits for plant productivity is critical for plant improvement.
View Article and Find Full Text PDFEnzymological and starch analyses of various ADP-glucose pyrophosphorylase (AGPase) null mutants point to fundamental differences in the pathways for starch synthesis in the maize leaf, embryo, ovary and endosperm. Leaf starch is synthesized via the AGPase encoded by the small and large subunits shown previously to be expressed at abundant levels in the leaf, whereas more than one AGPase isoform functions in the embryo and in the ovary. Embryo starch content is also dependent on genes functioning in the leaf and in the endosperm.
View Article and Find Full Text PDFThe enzyme ADP-glucose pyrophosphorylase is essential for starch biosynthesis and is highly regulated. Here, mutations that increased heat stability and interactions with allosteric effectors were incorporated into the small subunit of the isoform known to be expressed at high levels in the maize endosperm. The resulting variants were transformed into maize with expression targeted to the endosperm.
View Article and Find Full Text PDFIterative saturation mutagenesis (ISM) has been used to improve the thermostability of maize endosperm ADP-glucose pyrophosphorylase (AGPase), a highly-regulated, rate-limiting and temperature-sensitive enzyme essential for starch biosynthesis. The thermo-sensitivity of heterotetrameric AGPase has been linked to grain loss in cereals and improving this property might therefore have direct impacts on grain yield. Nine amino acids were selected for site-saturation mutagenesis on the basis of elevated B-factors in the crystal structure of the closest available homolog (a small subunit homotetramer of potato AGPase).
View Article and Find Full Text PDFThe mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) is highly regulated by allosteric effectors acting both positively and negatively. Enzymes from various sources differ, however, in the mechanism of allosteric regulation. Here, we determined how the effector, inorganic phosphate (Pi), functions in the presence and absence of saturating amounts of the activator, 3-phosphoglyceric acid (3-PGA).
View Article and Find Full Text PDFADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes.
View Article and Find Full Text PDFThe maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33 °C.
View Article and Find Full Text PDFHelitrons are a family of mobile elements that were discovered in 2001 and are now known to exist in the entire eukaryotic kingdom. Helitrons, particularly those of maize, exhibit an intriguing property of capturing gene fragments and placing them into the mobile element. Helitron-captured genes are sometimes transcribed, giving birth to chimeric transcripts that intertwine coding regions of different captured genes.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase catalyzes the synthesis of ADP-glucose (ADP-Glc) from Glc-1-phosphate (G-1-P) and ATP. Kinetic studies were performed to define the nature of the reaction, both in the presence and absence of allosteric effector molecules. When 3-phosphoglycerate (3-PGA), the putative physiological activator, was present at a saturating level, initial velocity studies were consistent with a Theorell-Chance BiBi mechanism and product inhibition data supported sequential binding of ATP and G-1-P, followed by ordered release of pyrophosphate and ADP-Glc.
View Article and Find Full Text PDFMaize (Zea mays) endosperm ADP-glucose pyrophosphorylase (AGPase) is a highly regulated enzyme that catalyzes the rate-limiting step in starch biosynthesis. Although the structure of the heterotetrameric maize endosperm AGPase remains unsolved, structures of a nonnative, low-activity form of the potato tuber (Solanum tuberosum) AGPase (small subunit homotetramer) reported previously by others revealed that several sulfate ions bind to each enzyme. These sites are also believed to interact with allosteric regulators such as inorganic phosphate and 3-phosphoglycerate (3-PGA).
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1-198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the last 277 amino acids from the potato tuber enzyme, was expressed with the maize endosperm large subunit and was reported to have favorable kinetic and allosteric properties. Here, we show that this mosaic, in the absence of activator, performs like a wild-type AGPase that is partially activated with 3-phosphoglyceric acid (3-PGA).
View Article and Find Full Text PDFADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endosperm AGPase to thermal inactivation.
View Article and Find Full Text PDFThe rate of protein evolution is generally thought to reflect, at least in part, the proportion of amino acids within the protein that are needed for proper function. In the case of ADP-glucose pyrophosphorylase (AGPase), this premise led to the hypothesis that, because the AGPase small subunit is more conserved compared with the large subunit, a higher proportion of the amino acids of the small subunit are required for enzyme activity compared with the large subunit. Evolutionary analysis indicates that the AGPase small subunit has been subject to more intense purifying selection than the large subunit in the angiosperms.
View Article and Find Full Text PDFThe heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain.
View Article and Find Full Text PDFThe allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation.
View Article and Find Full Text PDFAdenosine diphosphate glucose pyrophosphorylase (AGPase; EC 2.7.7.
View Article and Find Full Text PDF