SF3B1 splicing factor mutations are near-universally found in myelodysplastic syndromes (MDS) with ring sideroblasts (RS), a clonal hematopoietic disorder characterized by abnormal erythroid cells with iron-loaded mitochondria. Despite this remarkably strong genotype-to-phenotype correlation, the mechanism by which mutant SF3B1 dysregulates iron metabolism to cause RS remains unclear due to an absence of physiological models of RS formation. Here, we report an induced pluripotent stem cell model of SF3B1-mutant MDS that for the first time recapitulates robust RS formation during in vitro erythroid differentiation.
View Article and Find Full Text PDFMutations affecting spliceosomal proteins are the most common mutations in patients with myelodysplastic syndromes (MDS), but their role in MDS pathogenesis has not been delineated. Here we report that mutations affecting the splicing factor SRSF2 directly impair hematopoietic differentiation in vivo, which is not due to SRSF2 loss of function. By contrast, SRSF2 mutations alter SRSF2's normal sequence-specific RNA binding activity, thereby altering the recognition of specific exonic splicing enhancer motifs to drive recurrent mis-splicing of key hematopoietic regulators.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Substantial effort is currently devoted to identifying cancer-associated alterations using genomics. Here, we show that standard blood collection procedures rapidly change the transcriptional and posttranscriptional landscapes of hematopoietic cells, resulting in biased activation of specific biological pathways; up-regulation of pseudogenes, antisense RNAs, and unannotated coding isoforms; and RNA surveillance inhibition. Affected genes include common mutational targets and thousands of other genes participating in processes such as chromatin modification, RNA splicing, T- and B-cell activation, and NF-κB signaling.
View Article and Find Full Text PDFWhole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure.
View Article and Find Full Text PDFIsolating spliceosomes at a specific assembly stage requires a means to stall or enrich for one of the intermediate splicing complexes. We describe strategies to arrest spliceosomes at different points of complex formation and provide a detailed protocol developed for isolating intact splicing complexes arrested between the first and second chemical steps of splicing. Briefly, spliceosomes are assembled on a radiolabeled in vitro-transcribed splicing substrate from components present in nuclear extract of HeLa cells.
View Article and Find Full Text PDFIn spliceosomes, dynamic RNA/RNA and RNA/protein interactions position the pre-mRNA substrate for the two chemical steps of splicing. Not all of these interactions have been characterized, in part because it has not been possible to arrest the complex at clearly defined states relative to chemistry. Previously, it was shown in yeast that the DEAD/H-box protein Prp22 requires an extended 3' exon to promote mRNA release from the spliceosome following second-step chemistry.
View Article and Find Full Text PDF