Publications by authors named "Janine M Ritchie"

Peripheral tolerance is required to prevent autoimmune tissue destruction by self-reactive T cells that escape negative selection in the thymus. One mechanism of peripheral tolerance in CD8(+) T cells is their activation by resting dendritic cells (DC). In contrast, DC can be "licensed" by CD4(+) T cells to induce cytotoxic function in CD8(+) T cells.

View Article and Find Full Text PDF

The nature of the T-cell response to antigen is governed by the activation state of the antigen-presenting dendritic cell (DC). Immature or resting DCs have been shown to induce T-cell responses that may protect against the development of autoimmune disease. Effectively harnessing this "tolerogenic" effect of resting DCs requires that it be disease-specific and that activation of DCs by manipulation ex vivo is avoided.

View Article and Find Full Text PDF

Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application.

View Article and Find Full Text PDF

Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonobese diabetic (NOD) mice, recombinant congenic nonobese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice.

View Article and Find Full Text PDF