Publications by authors named "Janine Haueisen"

The barley disease Septoria Speckled Leaf Blotch, caused by the fungus Zymoseptoria passerinii, last appeared in North America in the early 2000s. Although rare in crops, field sampling of wild grasses in the Middle East revealed the disease persistence in wild barley. Identification of Z.

View Article and Find Full Text PDF

The ability of laser scanning confocal microscopy to generate high-contrast 2D and 3D images has become essential in studying plant-fungal interactions. Techniques such as visualization of native fluorescence, fluorescent protein tagging of microbes, green fluorescent protein (GFP)/red fluorescent protein (RFP)-fusion proteins, and fluorescent labeling of plant and fungal proteins have been widely used to aid in these investigations. Use of fluorescent proteins has several pitfalls, including variability of expression in planta and the requirement of gene transformation.

View Article and Find Full Text PDF

DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species.

View Article and Find Full Text PDF

Transposable elements (TEs) impact genome plasticity, architecture, and evolution in fungal plant pathogens. The wide range of TE content observed in fungal genomes reflects diverse efficacy of host-genome defense mechanisms that can counter-balance TE expansion and spread. Closely related species can harbor drastically different TE repertoires.

View Article and Find Full Text PDF

The fungus Zymoseptoria tritici is one of the most devastating pathogens of wheat. Aside from its importance as a disease-causing agent, this species has emerged as a powerful model system for evolutionary genetic studies of crop-infecting fungal pathogens. Z.

View Article and Find Full Text PDF

Background: Antagonistic co-evolution can drive rapid adaptation in pathogens and shape genome architecture. Comparative genome analyses of several fungal pathogens revealed highly variable genomes, for many species characterized by specific repeat-rich genome compartments with exceptionally high sequence variability. Dynamic genome structure may enable fast adaptation to host genetics.

View Article and Find Full Text PDF

Yield losses caused by fungal pathogens represent a major threat to global food production. One of the most devastating fungal wheat pathogens is Zymoseptoria tritici. Despite the importance of this fungus, the underlying mechanisms of plant-pathogen interactions are poorly understood.

View Article and Find Full Text PDF

Zymoseptoria tritici is a filamentous fungus causing Septoria tritici blotch in wheat. The pathogen has a narrow host range and infections of grasses other than susceptible wheat are blocked early after stomatal penetration. During these abortive infections, the fungus shows a markedly different gene expression pattern.

View Article and Find Full Text PDF

Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.

View Article and Find Full Text PDF

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen . Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation.

View Article and Find Full Text PDF

Filamentous plant pathogens explore host tissues to obtain nutrients for growth and reproduction. Diverse strategies for tissue invasion, defense manipulation, and colonization of inter and intra-cellular spaces have evolved. Most research has focused on effector molecules, which are secreted to manipulate plant immunity and facilitate infection.

View Article and Find Full Text PDF

The serious problem of extended tissue thickness in the analysis of plant-fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues.

View Article and Find Full Text PDF