A key link between amino acid catabolism and immune regulation in cancer is the augmented tryptophan (Trp) catabolism through the kynurenine pathway (KP), a metabolic route induced by interferon-γ (IFN-γ) and related to poor prognosis in melanomas. Besides its role in cancer, IFN-γ plays a key role in the control of pigmentation homeostasis. Here we measured KP metabolites in human melanoma lines and skin melanocytes and fibroblasts in response to IFN-γ.
View Article and Find Full Text PDFTryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme of tryptophan catabolism, has been strongly associated with the progression of malignancy and poor survival in melanoma patients. As a result, IDO1 is a leading target for interventions aimed at restoring melanoma immune surveillance. Here, in a scenario involving the tryptophan catabolism, we report that melatonin biosynthesis is driven by 1-methyl-tryptophan (1-MT), a competitive inhibitor of IDO1, in human fibroblasts, melanocytes and melanoma cells.
View Article and Find Full Text PDF