While fronto-posterior underconnectivity has often been reported in autism, it was shown that different contexts may modulate between-group differences in functional connectivity. Here, we assessed how different task paradigms modulate functional connectivity differences in a young autistic sample relative to typically developing children. Twenty-three autistic and 23 typically developing children aged 6 to 15 years underwent functional magnetic resonance imaging (fMRI) scanning while completing a reasoning task with visuospatial versus semantic content.
View Article and Find Full Text PDFThe neural underpinnings of enhanced locally oriented visual processing that are specific to autistics with a Wechsler's Block Design (BD) peak are largely unknown. Here, we investigated the brain correlates underlying visual segmentation associated with the well-established autistic superior visuospatial abilities in distinct subgroups using functional magnetic resonance imaging. This study included 31 male autistic adults (15 with (AUTp) and 16 without (AUTnp) a BD peak) and 28 male adults with typical development (TYP).
View Article and Find Full Text PDFEnhanced visuospatial abilities characterize the cognitive profile of a subgroup of autistics. However, the neural correlates underlying such cognitive strengths are largely unknown. Using functional magnetic resonance imaging (fMRI), we investigated the neural underpinnings of superior visuospatial functioning in different autistic subgroups.
View Article and Find Full Text PDFJ Autism Dev Disord
December 2023
In light of the known visuoperceptual strengths and altered language skills in autism, we investigated the impact of problem content (semantic/visuospatial) combined with complexity and presence of lures on fluid reasoning in 43 autistic and 41 typical children (6-13 years old). Increased complexity and presence of lures diminished performance, but less so as the children's age increased. Typical children were slightly more accurate overall, whereas autistic children were faster at solving complex visuospatial problems.
View Article and Find Full Text PDFMultimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe, an open processing pipeline for multimodal MRI datasets.
View Article and Find Full Text PDFBackground: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain.
View Article and Find Full Text PDFIntellectual assessment in preschool autistic children bears many challenges, particularly for those who have lower language and/or cognitive abilities. These challenges often result in underestimation of their potential or exclusion from research studies. Understanding how different instruments and definitions used to identify autistic preschool children with global developmental delay (GDD) affect sample composition is critical to advance research on this understudied clinical population.
View Article and Find Full Text PDFAutism is diagnosed according to atypical social-communication and repetitive behaviors. However, autistic individuals are also distinctive in the high variability of specific abilities such as learning. Having been characterized as experiencing great difficulty with learning, autistics have also been reported to learn spontaneously in exceptional ways.
View Article and Find Full Text PDF