Publications by authors named "Janice Yang Chou"

Glucose-6-phosphatase-β (G6Pase-β or G6PC3) deficiency is characterized by neutropenia and dysfunction in both neutrophils and macrophages. G6Pase-β is an enzyme embedded in the endoplasmic reticulum membrane that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate. To date, 33 separate G6PC3 mutations have been identified in G6Pase-β-deficient patients but only the p.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose 6-phosphate transporter (Glc-6-PT). Glc-6-PT activity has been shown to be critical in the liver and kidney where a deficiency disrupts glucose homeostasis. GSD-Ib patients also have defects in the neutrophil respiratory burst, chemotaxis, and calcium flux.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) patients manifest a pro-atherogenic lipid profile but are not at elevated risk for developing atherosclerosis. Serum phospholipid, which correlates positively with the scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux, and apolipoprotein A-IV and E, acceptors for ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol transport, are increased in GSD-Ia mice. Importantly, sera from GSD-Ia mice are more efficient than sera from control littermates in promoting SR-BI- and ABCA1-mediated cholesterol effluxes.

View Article and Find Full Text PDF

The effect of fasting on mouse liver methionine adenosyltransferase (MAT I/ III) expression and the regulation of methionine metabolism were investigated. The mRNA level, protein level, and activity of MAT I/III were increased by fasting for 10 or 16 h. In spite of the increase of MAT I/III activity, S-adenosylmethionine, the product of methionine due to MAT I/III, decreased.

View Article and Find Full Text PDF

Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney.

View Article and Find Full Text PDF

The breakdown of tissue glycogen into glucose is critical for blood glucose homeostasis between meals. In the final steps of glycogenolysis, intracellular glucose 6-phosphate (Glc-6-P) is transported into the endoplasmic reticulum where it is hydrolyzed to glucose by glucose-6-phosphatase (Glc-6-Pase). Although the majority of body glycogen is stored in the muscle, the current dogma holds that Glc-6-Pase (now named Glc-6-Pase-alpha) is expressed only in the liver, kidney, and intestine, implying that muscle glycogen cannot contribute to interprandial blood glucose homeostasis.

View Article and Find Full Text PDF

The islet-specific glucose-6-phosphatase-related protein (IGRP) has no known catalytic activity, but is of interest because it is the source of the peptide autoantigen targeted by a prevalent population of pathogenic CD8(+) T cells in non-obese diabetic mice. To better understand the potential roles of this protein in diabetes mellitus, we examine the subcellular localization and membrane topography of human IGRP. We show that IGRP is a glycoprotein, held in the endoplasmic reticulum by nine transmembrane domains, which is degraded in cells predominantly through the proteasome pathway that generates the major histocompatibility complex class I-presented peptides.

View Article and Find Full Text PDF

The glucose-6-phosphatase (Glc-6-Pase) family comprises two active endoplasmic reticulum (ER)-associated isozymes: the liver/kidney/intestine Glc-6-Pase-alpha and the ubiquitous Glc-6-Pase-beta. Both share similar kinetic properties. Sequence alignments predict the two proteins are structurally similar.

View Article and Find Full Text PDF

A fine control of the blood glucose level is essential to avoid hyper- or hypo-glycemic shocks associated with many metabolic disorders, including diabetes mellitus and type I glycogen storage disease. Between meals, the primary source of blood glucose is gluconeogenesis and glycogenolysis. In the final step of both pathways, glucose-6-phosphate (G6P) is hydrolyzed to glucose by the glucose-6-phosphatase (G6Pase) complex.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). In addition to disrupted glucose homeostasis, GSD-Ib patients have unexplained and unexpected defects in neutrophil respiratory burst, chemotaxis and calcium flux, in response to the bacterial peptide f-Met-Leu-Phe, as well as intermittent neutropenia. We generated a G6PT knockout (G6PT-/-) mouse that mimics all known defects of the human disorder and used the model to further our understanding of the pathogenesis of GSD-Ib.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Sequence alignments identify a signature motif shared by G6PT and a family of transporters of phosphorylated metabolites. Two null signature motif mutations have been identified in the G6PT gene of GSD-Ib patients.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), a 10 transmembrane domain endoplasmic reticulum protein. To date, 69 G6PT mutations, including 28 missenses and 2 codon deletions, have been identified in GSD-Ib patients. We previously characterized 15 of the missense and one codon deletion mutations using a pSVL-based expression assay.

View Article and Find Full Text PDF

Unlabelled: Glycogen storage disease type 1a (GSD-1a), characterized by growth retardation, hypoglycemia, hepatomegaly, kidney enlargement, hyperlipidemia, hyperuricemia, and renal dysfunction, is caused by deficiencies in glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis. Over the last 20 years, dietary therapies have greatly improved the prognosis of GSD-1a patients. However, the underlying pathological process remains uncorrected and the efficacy of dietary treatment is frequently limited by poor compliance.

View Article and Find Full Text PDF

Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type Ia (GSD-Ia), an autosomal recessive disorder characterized by growth retardation, hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. G6Pase is an endoplasmic reticulum-associated transmembrane protein expressed primarily in the liver and the kidney. Therefore, enzyme replacement therapy is not feasible using current strategies, but somatic gene therapy, targeting G6Pase to the liver and the kidney, is an attractive possibility.

View Article and Find Full Text PDF

Glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, is anchored to the endoplasmic reticulum by nine transmembrane helices. The amino acids comprising the catalytic center of G6Pase include Lys(76), Arg(83), His(119), Arg(170), and His(176). During catalysis, a His residue in G6Pase becomes phosphorylated generating an enzyme-phosphate intermediate.

View Article and Find Full Text PDF

Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders with an incidence of 1 in 100,000. The two major subtypes are GSD-Ia (MIM232200), caused by a deficiency of glucose-6-phosphatase (G6Pase), and GSD-Ib (MIM232220), caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Both G6Pase and G6PT are associated with the endoplasmic reticulum (ER) membrane.

View Article and Find Full Text PDF

Glycogen storage disease type 1a is caused by a deficiency in glucose-6-phosphatase (G6Pase), a nine-helical endoplasmic reticulum transmembrane protein required for maintenance of glucose homeostasis. To date, 75 G6Pase mutations have been identified, including 48 mutations resulting in single-amino acid substitutions. However, only 19 missense mutations have been functionally characterized.

View Article and Find Full Text PDF