Two species of Haploembia Ramburi (Oligotomidae: Embioptera), nonnative detritivores found in the western USA, display solitary tendencies, not typical for webspinners that usually share silk galleries. Reports from the 1960s based on native populations in Italy highlighted the impact of a gregarine that depressed male sterility and female survivorship in Haploembia solieri (Rambur). Sympatric asexual Haploembia tarsalis (Ross) lives a normal lifespan when parasitized, albeit suffering from reduced fecundity.
View Article and Find Full Text PDFEmbioptera (webspinners) are insects that construct domiciles using silk produced from their front feet. This silk is the finest known with measured single fiber diameters in the 30-140 nm range. In the wild, some webspinner silk on trees is observed to have a clothlike or shiny sheetlike appearance.
View Article and Find Full Text PDFSilks produced by webspinners (Order Embioptera) interact with water by transforming from fiber to film, which then becomes slippery and capable of shedding water. We chose to explore this mechanism by analyzing and comparing the silk protein transcripts of two species with overlapping distributions in Trinidad but from different taxonomic families. The transcript of one, Antipaluria urichi (Clothodidae), was partially characterized in 2009 providing a control for our methods to characterize a second species: Pararhagadochir trinitatis (Scelembiidae), a family that adds to the taxon sampling for this little known order of insects.
View Article and Find Full Text PDFEmbioptera display the unique ability to spin silk with their front feet to create protective domiciles. Their body form is remarkably uniform throughout the order, perhaps because they all live within the tight confines of silken tubes. This study contributes to an understanding of the ecology of Embioptera, an order that is rarely studied in the field.
View Article and Find Full Text PDFThe articulated appendages of arthropods are highly adaptable and potentially multifunctional, used for walking, swimming, feeding, prey capture, or other functions. Webspinners (Order Embioptera) are a paragon in this context. In contrast to other arthropods producing silk, they utilize their front feet for silk production.
View Article and Find Full Text PDFInsects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species-, , , , , , , and . Silk from seven of these species have not been previously quantified.
View Article and Find Full Text PDFThe names of two cryptic species of Haploembia found in California are resolved and methods for identification are summarized. Molecular data of the Histone III subunit was used to evaluate color and behavior as species identifiers, confirming that antisocial behavior is a good identifier for the parthenogenetic species (Haploembia tarsalis), whereas the more variable coloration patterns were helpful, but less so. A genome size ratio of 1.
View Article and Find Full Text PDFInsects of the order Embioptera, known as embiopterans, embiids, or webspinners, weave silk fibers together into sheets to make shelters called galleries. In this study, we show that silk galleries produced by the embiopteran Antipaluria urichi exhibit a highly hydrophobic wetting state with high water adhesion macroscopically equivalent to the rose petal effect. Specifically, the silk sheets have advancing contact angles above 150°, but receding contact angle approaching 0°.
View Article and Find Full Text PDFWebspinners (Insecta: Embioptera) have a distinctly unique behaviour with related morphological characteristics. Producing silk with the basitarsomeres of their forelegs plays a crucial role in the lives of these insects--providing shelter and protection. The correlation between body size, morphology and morphometrics of the spinning apparatus and the spinning behaviour of Embioptera was investigated for seven species using state-of-the-art methodology for behavioural as well as for morphological approaches.
View Article and Find Full Text PDFEmbiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species and are studied in this work.
View Article and Find Full Text PDFFour new species of webspinners in the genus Ptilocerembia Friederichs (Ptilocerembiidae) are described including Ptilocerembia thaidina sp. n., P.
View Article and Find Full Text PDFSubstrate vibration communication is displayed by a variety of insects that rely on silk for shelter. Such signaling is often associated with territoriality and social interactions. The goal in this study was to explore the use of substrate vibration by subsocial insects of the little-studied order Embioptera (also known as Embiidina).
View Article and Find Full Text PDFEmbiopterans (webspinning insects) are renowned for their prolific use of silk. These organisms spin silk to construct elaborate networks of tubes in which they live, forage, and reproduce. The silken galleries are essential for protecting these soft-bodied insects from predators and other environmental hazards.
View Article and Find Full Text PDFEmbioptera is a little studied order of widely distributed, but rarely seen, insects. Members of this group, also called embiids or webspinners, all heavily rely on silken tunnels in which they live and reproduce. However, embiids vary in their substrate preferences and these differences may result in divergent silk mechanical properties.
View Article and Find Full Text PDFA cladistic analysis of embiopterans, based on 157 species (representing 70% of the known genera) and 186 morphological characters, is presented, as well as a molecular analysis for 22 taxa using genes encoding 16S, 18S and 28S rDNA and COI. Species of all known families are included, except Andesembiidae Ross (specimens of which are in a private collection). The evidence presented supports the monophyly of four of the families (Australembiidae, Oligotomidae, Teratembiidae, and Anisembiidae).
View Article and Find Full Text PDFInsect Biochem Mol Biol
February 2009
Silks are renowned for being lightweight materials with impressive mechanical properties. Though moth and spider silks have received the most study, silk production has evolved in many other arthropods. One insect group that has been little investigated is Embioptera (webspinners).
View Article and Find Full Text PDF