Lipid nanoparticles (LNPs) and ribonucleic acid (RNA) technology are highly versatile tools that can be deployed for diagnostic, prophylactic, and therapeutic applications. In this report, supramolecular chemistry concepts are incorporated into the rational design of a new ionizable lipid, C3-K2-E14, for systemic administration. This lipid incorporates a cone-shaped structure intended to facilitate cell bilayer disruption, and three tertiary amines to improve RNA binding.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are the most clinically advanced delivery vehicles for RNA and have enabled the development of RNA-based drugs such as the mRNA COVID-19 vaccines. Functional delivery of mRNA by an LNP greatly depends on the inclusion of an ionizable lipid, and small changes to these lipid structures can significantly improve delivery. However, the structure-function relationships between ionizable lipids and mRNA delivery are poorly understood, especially for LNPs administered intramuscularly.
View Article and Find Full Text PDFIntroduction: Ionizable lipids are critical components in lipid nanoparticles. These molecules sequester nucleic acids for delivery to cells. However, to build more efficacious delivery molecules, the field must continue to broaden structure-function studies for greater insight.
View Article and Find Full Text PDFmiRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, β-cell mass, and insulin levels.
View Article and Find Full Text PDF