Publications by authors named "Janice Onuki"

Snake envenomation is a neglected tropical disease. In Brazil, the genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization.

View Article and Find Full Text PDF

5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid.

View Article and Find Full Text PDF

β-Sitosterol (βSito) is the most abundant phytosterol found in vegetable oils, grains such as wheat, beans, and corn, and in many phytosterol-enriched foods. It is prone to oxidation by reactive oxygen species, such as ozone, leading to the formation of oxyphytosterols. A better understanding regarding the biological effects and mechanism of action of oxyphytosterols is required since the beneficial and adverse side effects of these compounds on human health remain highly controversial.

View Article and Find Full Text PDF

The term cylindrospermopsins (CYNs) refers to a structurally related class of cyanobacterial metabolites comprised of a tricyclic guanidine group and a hydroxymethyluracil moiety. Most reports in environmental aquatic samples refer to cylindrospermopsin (CYN), and reports on other CYN alkaloids are scarce, due, in part, to a lack of versatile isolation protocols. Thus, using commercially available solid phase extraction (SPE) cartridges, we optimized an isolation protocol for the complete recovery of CYN, 7-deoxy-cylindrospermopsin (7D-CYN) and 7-deoxy-desulfo-cylindrospermopsin (7D-desulfo-CYN) from the same aliquot.

View Article and Find Full Text PDF

β-Sitosterol (βSito) is the most abundant phytosterol found in elevated concentrations in vegetable oils, nuts, seeds, cereals, fruits, and in many phytosterol-enriched foods. Although the benefits, there is a concern in terms of food quality and health due to the increasing consumption of phytosterols and the possible adverse side effects of their oxidation products, oxyphytosterols. βSito has a similar structure to cholesterol, with an unsaturated double bond at C5-C6, which is susceptible to oxidation by reactive oxygen species like ozone, generating oxyphytosterols.

View Article and Find Full Text PDF

A growing number of studies indicate a link between oxidative stress and cancer. We previously developed a rat model of renal cell carcinoma (RCC) induced by ferric nitrilotriacetate (Fe-NTA). Here, we performed a genome-wide analysis to study characteristics of genomic alteration and identify putative genes involved in the development of Fe-NTA-induced RCCs.

View Article and Find Full Text PDF

Recently Welch et al. reported that microRNA (miRNA)-34a functions as a potential tumor suppressor in neuroblastoma cells (Oncogene 26: 5017-22, 2007). Here, we conversely show that miRNA-34a supports cell proliferation in rat oxidative stress-induced renal carcinogenesis and is overexpressed in various types of human cancers.

View Article and Find Full Text PDF

Oxidative stress is a persistent threat to the genome and is associated with major causes of human mortality, including cancer, atherosclerosis, and aging. Here we established a method to generate libraries of genomic DNA fragments containing oxidatively modified bases by using specific monoclonal antibodies to immunoprecipitate enzyme-digested genome DNA. We applied this technique to two different base modifications, 8-hydroxyguanine and 1,N6-propanoadenine (acrotein-Ade), in a ferric nitrilotriacetate-induced murine renal carcinogenesis model.

View Article and Find Full Text PDF

An iron chelate, ferric nitrilotriacetate (Fe-NTA), induces oxidative renal proximal tubular damage that subsequently leads to a high incidence of renal cell carcinoma in rodents, presenting an intriguing model of free radical-induced carcinogenesis. In the present study, we used gpt delta transgenic mice, which allow efficient detection of point mutations and deletions in vivo, to evaluate the mutation spectra, in association with the formation of 8-oxoguanine and acrolein-modified adenine during the first 3 weeks of carcinogenesis. Immunohistochemical analysis revealed the highest levels of 8-oxoguanine and acrolein-modifed adenine in the renal proximal tubules after 1 week of repeated administration.

View Article and Find Full Text PDF

Pre-administration of alpha-tocopherol is protective against oxidative renal tubular damage and subsequent carcinogenesis by ferric nitrilotriacetate (Fe-NTA) in rats. We searched for mechanisms other than the scavenging effect of alpha-tocopherol with microarray analyses, which implicated calnexin, a chaperone for glycoproteins. Renal mRNA levels of calnexin significantly increased 3h after an injection of Fe-NTA in rats fed a standard diet whereas those fed an alpha-tocopherol-supplemented diet showed an increase prior to injection, but after injection showed a decrease in renal calnexin mRNA levels, with unaltered protein levels.

View Article and Find Full Text PDF

Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress.

View Article and Find Full Text PDF

Many physiologic changes related to light-dark cycles and antioxidant effects have been related to melatonin (N-acetyl-5-methoxytryptamine) and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK). In this review, we discuss some methodologies, in particular, those employing high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) assays to quantitatively determine melatonin, AFMK, and AMK. These approaches offer a highly specific and an accurate quantification of melatonin and its metabolites.

View Article and Find Full Text PDF

Porphyrias are defined as either inborn or acquired diseases related to enzymatic deficiencies in the heme biosynthetic pathway. Lead poisoning, hereditary tyrosinemia, and acute intermittent porphyria (AIP) are characterized by the absence of photosensitivity and the accumulation of 5-aminolevulinic acid (ALA) together with its increased urinary excretion. The main clinical manifestations of AIP are intermittent attacks of abdominal pain, neuromuscular weaknesses and neuropsychiatry alterations, and also an association with primary liver cancer, in which may be involved the oxidative potential of ALA which is able to cause DNA damage.

View Article and Find Full Text PDF

5-Aminolevulinic acid (ALA) is a heme precursor accumulated in plasma and in organs in acute intermittent porphyria (AIP), a disease associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma (HCC). Liver biopsies of AIP patients showed odd-shaped mitochondria and autophagic vacuoles containing well-preserved mitochondria. ALA yields reactive oxygen species upon metal-catalyzed oxidation and causes in vivo and in vitro impairment of rat liver mitochondria and DNA damage.

View Article and Find Full Text PDF

Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA.

View Article and Find Full Text PDF

5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in some porphyric disorders and in lead poisoning which can undergo metal-catalyzed oxidation producing reactive oxygen species and the keto-aldehyde, 4,5-dioxovaleric acid (DOVA). Evidence in vitro of ALA-induced DNA lesions suggests that ALA and DOVA have mutagenic potential that could possibly contribute to an increased frequency of hepatocellular carcinoma (HCC) in patients with acute intermittent porphyria (AIP). In this study, we evaluated the genotoxic potential of ALA and DOVA.

View Article and Find Full Text PDF

5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in acute intermittent porphyria (AIP) due to enzymatic deficiencies in the heme biosynthetic pathway Its accumulation has been associated with several symptoms, such as abdominal pain attacks, neuromuscular weaknesses, neuropsychiatric alterations and increased hepatocellular carcinoma (HCC) incidence. The use of exogenous ALA to elevate porphyrin levels in tumor photodynamic therapy, adds further significance to ALA toxicology. Under ferritin mediated and metal catalyzed oxidation, ALA produces reactive oxygen species that can damage plasmid and isolated DNA in vitro, and increases the steady-state level of 8-oxo-7,8-dihydro-2'-deoxyguanosine in liver, spleen and kidney DNA and 5-hydroxy-2'-deoxycytidine in liver DNA of ALA-treated rats.

View Article and Find Full Text PDF