Publications by authors named "Janice Lough"

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST). The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum.

View Article and Find Full Text PDF
Article Synopsis
  • Coral-based proxies like δO, Sr/Ca, U/Ca, and Li/Mg are useful for reconstructing sea surface temperatures (SST) in climate studies, but their effectiveness can vary based on environmental factors and coral physiology.
  • In this study, researchers analyzed geochemical records from seven Porites corals in the Great Barrier Reef, using advanced techniques to evaluate the reliability of traditional and newly developed temperature proxies over long timescales.
  • Findings indicate that U/Ca is the most reliable proxy for SST in the Great Barrier Reef, while Li/Mg and B/Mg show strong correlations with SST, suggesting the need for updated calibrations to improve temperature reconstructions.
View Article and Find Full Text PDF

Anthropogenic nutrient discharge to coastal marine environments is commonly associated with excessive algal growth and ecosystem degradation. However in the world's largest coral reef ecosystem, the Great Barrier Reef (GBR), the response to enhanced terrestrial nutrient inputs since European settlement in the 1850's remains unclear. Here we use a 333 year old composite record (1680-2012) of N/N in coral skeleton-bound organic matter to understand how nitrogen cycling in the coastal GBR has responded to increased anthropogenic nutrient inputs.

View Article and Find Full Text PDF

As oceans continue to warm under climate change, understanding the differential growth responses of corals is increasingly important. Scleractinian corals exhibit a broad range of life-history strategies, yet few studies have explored interspecific variation in long-term growth rates under a changing climate. Here we studied growth records of two coral species with different growth forms, namely branching Isopora palifera and massive Porites spp.

View Article and Find Full Text PDF

Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years.

View Article and Find Full Text PDF

The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga's growth responses to such changes. The aim of this study was to explore the presence and characterise the nature of banding in the tropical coralline alga Porolithon onkodes, an abundant and key reef-building species on the Great Barrier Reef (GBR) Australia, and the Indo-Pacific in general.

View Article and Find Full Text PDF

Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans.

View Article and Find Full Text PDF

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year.

View Article and Find Full Text PDF

Eastern Australia recently experienced an intense drought (Millennium Drought, 2003-2009) and record-breaking rainfall and flooding (austral summer 2010-2011). There is some limited evidence for a climate change contribution to these events, but such analyses are hampered by the paucity of information on long-term natural variability. Analyzing a new reconstruction of summer (December-January-February) Palmer Drought Severity Index (the Australia-New Zealand Drought Atlas; ANZDA, 1500-2012 CE), we find moisture deficits during the Millennium Drought fall within the range of the last 500 years of natural hydroclimate variability.

View Article and Find Full Text PDF

Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities.

View Article and Find Full Text PDF

Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions.

View Article and Find Full Text PDF

The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales.

View Article and Find Full Text PDF

The tropical ocean environment is changing at an unprecedented rate, with warming and severe tropical cyclones creating obvious impacts to coral reefs within the last few decades and projections of acidification raising concerns for the future of these iconic and economically important ecosystems. Documenting variability and detecting change in global and regional climate relies upon high-quality observational records of climate variables supplemented, prior to the mid-19th century, with reconstructions from various sources of proxy climate information. Here we review how annual density banding patterns that are recorded in the skeletons of massive reef-building corals have been used to document environmental change and impacts within coral reefs.

View Article and Find Full Text PDF

Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching.

View Article and Find Full Text PDF

Over 500 Free Amino Acid (FAA) and corresponding Total Hydrolysed Amino Acid (THAA) analyses were completed from eight independently-dated, multi-century coral cores of massive sp. colonies. This dataset allows us to re-evaluate the application of amino acid racemization (AAR) for dating late Holocene coral material, 20 years after Goodfriend et al.

View Article and Find Full Text PDF

Anthropogenic increases of atmospheric carbon dioxide lead to warmer sea surface temperatures and altered ocean chemistry. Experimental evidence suggests that coral calcification decreases as aragonite saturation drops but increases as temperatures rise toward thresholds optimal for coral growth. In situ studies have documented alarming recent declines in calcification rates on several tropical coral reef ecosystems.

View Article and Find Full Text PDF

Reef-building corals are under increasing physiological stress from a changing climate and ocean absorption of increasing atmospheric carbon dioxide. We investigated 328 colonies of massive Porites corals from 69 reefs of the Great Barrier Reef (GBR) in Australia. Their skeletal records show that throughout the GBR, calcification has declined by 14.

View Article and Find Full Text PDF

Tropical coral reefs are charismatic ecosystems that house a significant proportion of the world's marine biodiversity. Their valuable goods and services are fundamental to the livelihood of large coastal populations in the tropics. The health of many of the world's coral reefs, and the goods and services they provide, have already been severely compromised, largely due to over-exploitation by a range of human activities.

View Article and Find Full Text PDF

The oceans are becoming more acidic due to absorption of anthropogenic carbon dioxide from the atmosphere. The impact of ocean acidification on marine ecosystems is unclear, but it will likely depend on species adaptability and the rate of change of seawater pH relative to its natural variability. To constrain the natural variability in reef-water pH, we measured boron isotopic compositions in a approximately 300-year-old massive Porites coral from the southwestern Pacific.

View Article and Find Full Text PDF

The effect of European settlement on water quality in the Great Barrier Reef of Australia is a long-standing and controversial issue. Erosion and sediment transport in river catchments in this region have increased substantially since European settlement, but the magnitude of these changes remains uncertain. Here we report analyses of Ba/Ca ratios in long-lived Porites coral from Havannah Reef--a site on the inner Great Barrier Reef that is influenced by flood plumes from the Burdekin river--to establish a record of sediment fluxes from about 1750 to 1998.

View Article and Find Full Text PDF

A 420-year history of strontium/calcium, uranium/calcium, and oxygen isotope ratios in eight coral cores from the Great Barrier Reef, Australia, indicates that sea surface temperature and salinity were higher in the 18th century than in the 20th century. An abrupt freshening after 1870 occurred simultaneously throughout the southwestern Pacific, coinciding with cooling tropical temperatures. Higher salinities between 1565 and 1870 are best explained by a combination of advection and wind-induced evaporation resulting from a strong latitudinal temperature gradient and intensified circulation.

View Article and Find Full Text PDF