Publications by authors named "Janice Knowlden"

Introduction: Recently we reported that insulin receptor substrate 1 (IRS-1), classically an adaptor protein for the insulin-like growth factor type I receptor (IGF-IR), associates with the epidermal growth factor receptor in oestrogen receptor (ER)-positive (ER+) tamoxifen-resistant breast cancer cells. In this study, we examined whether IRS-1 also associates with another erbB receptor family member, erbB3, and what impact this might have on IGF-IR signalling in three ER+ breast cancer cell lines.

Methods: Immunoprecipitation and Western blot analysis were utilised to examine the potential association between erbB3 and IRS-1 in MCF-7, T47D and BT-474 cells in the absence and presence of the erbB3/4 ligand heregulin β1 (HRGβ1).

View Article and Find Full Text PDF

Introduction: We have previously reported that induction of epidermal growth factor receptor and ErbB2 in response to antihormonal agents may provide an early mechanism to allow breast cancer cells to evade the growth-inhibitory action of such therapies and ultimately drive resistant cell growth. More recently, the other two members of the ErbB receptor family, ErbB3 and ErbB4, have been implicated in antihormone resistance in breast cancer. In the present study, we have investigated whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance mechanism to antihormonal action in a panel of four oestrogen receptor (ER)-positive breast cancer cell lines.

View Article and Find Full Text PDF

Using MCF7 breast cancer cells, it has been shown that antihormones promote expression/activity of oestrogen-repressed tyrosine kinases, notably EGFR, HER2 and Src. These inductive events confer responsiveness to targeted inhibitors (e.g.

View Article and Find Full Text PDF

Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF.

View Article and Find Full Text PDF

Introduction: Resistance to anti-epidermal growth factor receptor (anti-EGFR) therapies is an emerging clinical problem. The efficacy of anti-EGFR therapies can be influenced by the presence of heregulins (HRGs), which can bind erbB3/4 receptors and can activate alternative signalling pathways. In the present study we have examined whether HRG signalling can circumvent EGFR blockade in an EGFR-positive tamoxifen-resistant MCF-7 (Tam-R) breast cancer cell line.

View Article and Find Full Text PDF

Aberrant epidermal growth factor receptor (EGFR) signalling, a key feature of a variety of human malignancies, can drive a range of mechanisms underlying tumour growth and progression, including increased cell proliferation, angiogenesis, metastasis and decreased apoptosis. Anti-EGFR therapies, as monotherapies and in combination with chemotherapy, have proved effective in inhibiting these processes both in the clinical and in the preclinical settings. However, only a small cohort of patients have derived significant benefit from this therapy, with both de novo and acquired resistance to these agents evident in a number of recent studies.

View Article and Find Full Text PDF

Aberrant signalling through the epidermal growth factor receptor (EGFR) plays a major role in the progression and maintenance of the malignant phenotype and the receptor is therefore a rational anti-cancer target. A variety of approaches have been developed to specifically target the EGFR which include monoclonal antibodies and small molecule tyrosine kinase inhibitors, such as gefitinib (Iressa). However, the recent clinical experience across a range of cancer types is revealing that despite the anti-EGFR agents demonstrating some anti-tumour activity, there is a high level of de novo and acquired resistance to such treatments and moreover, overexpression of the EGFR is clearly not the sole determinant of response to such therapies.

View Article and Find Full Text PDF

An increasing body of evidence demonstrates that growth factor networks are highly interactive with estrogen receptor signaling in the control of breast cancer growth. As such, tumor responses to antiestrogens are likely to be a composite of the estrogen receptor and growth factor-inhibitory activity of these agents, with alterations/aberrations in growth factor signaling providing a mechanism for the development of antiestrogen resistance. In this light, the current article focuses on illustrating the relationship between growth factor signaling and antiestrogen failure in our in-house tumor models of breast cancer and describing how we are now beginning to successfully target growth factor activity to improve the effects of antiestrogen drugs and to block aggressive disease progression.

View Article and Find Full Text PDF

We have examined the relative mRNA expression of the complement (C) regulatory proteins CD59, CD55 and CD46 in RNA isolated from 50 primary breast cancer specimens using a semiquantitative RT-PCR approach. Having normalized the mRNA expression levels of the C regulators relative to actin, we subsequently correlated their expression with estrogen receptor (ER) and various clinical, pathologic and biochemical features of the disease. CD59 and CD46 were detected in all clinical biopsies, while CD55 mRNA was detected in the majority of samples.

View Article and Find Full Text PDF

Many estrogen receptor-positive breast cancer patients initially respond to treatment with antihormonal agents such as tamoxifen, but remissions are often followed by acquisition of resistance and ultimately disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms that contribute towards loss of antiestrogen response. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells that are thought to reinforce their individual cellular effects on growth and gene responses.

View Article and Find Full Text PDF

Oestrogen receptor (ER) levels are usually maintained on acquisition of tamoxifen resistance in the clinic, however, tumour re-growth is associated with increased expression of epidermal growth factor receptor (EGFR) and activation of the mitogen activated protein kinase (MAPK) pathway. In the present study we have used the ER down-regulator fulvestrant ('Faslodex') to investigate the influence of the ER on growth of a tamoxifen-resistant (TAM-R) human breast cancer cell line. Expression levels of ER mRNA and protein were equivalent in parental wild-type MCF-7 (WT) and TAM-R cells.

View Article and Find Full Text PDF

The development of acquired resistance to antihormonal agents in breast cancer is a major therapeutic problem. We have developed a tamoxifen-resistant (TAM-R) MCF-7 breast cancer cell line to investigate the mechanisms behind this condition. Both epidermal growth factor receptor (EGFR) and c-erbB2 mRNA and protein expression were increased in TAM-R compared with wild-type MCF-7 cells, whereas comparable levels of c-erbB3 mRNA and protein were expressed in both cell lines.

View Article and Find Full Text PDF