Publications by authors named "Janice Chou"

Article Synopsis
  • * The huR83C mouse model replicates the disease phenotype and has been used to test the effectiveness of BEAM-301, a treatment that utilizes lipid nanoparticles and adenine base editing to correct the harmful G6PC1-R83C variant.
  • * BEAM-301 has shown the ability to correct about 60% of the variant in liver cells, restore blood sugar control, improve overall health, and increase survival rates in mice, indicating its potential as a therapeutic option for patients with this specific genetic mutation
View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the enzyme glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the gluconeogenic organs, namely liver, kidney cortex, and intestine. Renal G6Pase-α deficiency in GSD-Ia is characterized by impaired gluconeogenesis, nephromegaly due to elevated glycogen accumulation, and nephropathy caused, in part, by renal fibrosis, mediated by activation of the renin-angiotensin system (RAS). The Wnt/β-catenin signaling regulates the expression of a variety of downstream mediators implicated in renal fibrosis, including multiple genes in the RAS.

View Article and Find Full Text PDF

Glycogen storage disease type-Ia (GSD-Ia), characterized by impaired blood glucose homeostasis, is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). Using the G6pc-R83C mouse model of GSD-Ia, we explored a CRISPR/Cas9-based double-strand DNA oligonucleotide (dsODN) insertional strategy that uses the nonhomologous end-joining repair mechanism to correct the pathogenic p.R83C variant in G6pc exon-2.

View Article and Find Full Text PDF

Gustation is important to several biological functions in mammals. However, chemotherapy drugs often harm taste perception in cancer patients, while the underlying mechanism is still unclear for most drugs and there is no effective way to restore taste function. This study investigated the effects of cisplatin on the taste cell homeostasis and gustatory function.

View Article and Find Full Text PDF

Type I glycogen storage diseases (GSD-I) consist of two major autosomal recessive disorders, GSD-Ia, caused by a reduction of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity and GSD-Ib, caused by a reduction in the glucose-6-phosphate transporter (G6PT or SLC37A4) activity. The G6Pase-α and G6PT are functionally co-dependent. Together, the G6Pase-α/G6PT complex catalyzes the translocation of G6P from the cytoplasm into the endoplasmic reticulum lumen and its subsequent hydrolysis to glucose that is released into the blood to maintain euglycemia.

View Article and Find Full Text PDF

Type Ib glycogen storage disease (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that translocates G6P from the cytoplasm into the endoplasmic reticulum lumen, where the intraluminal G6P is hydrolyzed to glucose by glucose-6-phosphatase-α (G6Pase-α). Clinically, GSD-Ib patients manifest a metabolic phenotype of impaired blood glucose homeostasis and a long-term risk of hepatocellular adenoma/carcinoma (HCA/HCC). Studies have shown that autophagy deficiency contributes to hepatocarcinogenesis.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established.

View Article and Find Full Text PDF

The current phase I/II clinical trial for human glycogen storage disease type-Ia (GSD-Ia) (NCT03517085) uses a recombinant adeno-associated virus (rAAV) vector expressing a codon-optimized human glucose-6-phosphatase-α (G6Pase-α or G6PC). DNA sequence changes introduced by codon-optimization can negatively impact gene expression. We therefore generated a novel variant in which a single amino acid change, S298C, is introduced into the native human G6PC sequence.

View Article and Find Full Text PDF

Glucose-6-phosphatase-α (G6Pase-α or G6PC) deficiency in glycogen storage disease type-Ia (GSD-Ia) leads to impaired hepatic autophagy, a recycling process important for cellular metabolism and homeostasis. Autophagy can be regulated by several energy sensing pathways, including sirtuin 1 (SIRT1), forkhead box O (FoxO), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-α (PPAR-α), and mammalian target of rapamycin (mTOR). Using 10-day old global G6pc-deficient (G6pc-/-) mice, hepatic autophagy impairment was attributed to activation of mTOR and inhibition of AMPK signaling.

View Article and Find Full Text PDF

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of the metabolic disorder glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6PC or G6Pase-α). We have shown previously that hepatic G6Pase-α deficiency leads to autophagy impairment, mitochondrial dysfunction, enhanced glycolysis, and augmented hexose monophosphate shunt, all of which can contribute to hepatocarcinogenesis. However, the mechanism underlying HCA/HCC development in GSD-Ia remains unclear.

View Article and Find Full Text PDF

Glycogen storage disease type-Ia (GSD-Ia), caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), is characterized by impaired glucose homeostasis with a hallmark hypoglycemia, following a short fast. We have shown that G6pc-deficient (G6pc-/-) mice treated with recombinant adeno-associated virus (rAAV) vectors expressing either wild-type (WT) (rAAV-hG6PC-WT) or codon-optimized (co) (rAAV-co-hG6PC) human (h) G6Pase-α maintain glucose homeostasis if they restore ≥3% of normal hepatic G6Pase-α activity. The co vector, which has a higher potency, is currently being used in a phase I/II clinical trial for human GSD-Ia (NCT03517085).

View Article and Find Full Text PDF

Hepatocellular adenoma/carcinoma (HCA/HCC) is a long-term complication of glycogen storage disease type-Ia (GSD-Ia), which is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in gluconeogenesis. Currently, there is no therapy to address HCA/HCC in GSD-Ia. We have previously shown that a recombinant adeno-associated virus (rAAV) vector-mediated G6PC gene transfer to 2-week-old G6pc-/- mice prevents HCA development.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose-6-phosphate (G6P) transporter (G6PT or SLC37A4). The primary function of G6PT is to translocate G6P from the cytoplasm into the lumen of the endoplasmic reticulum (ER). Inside the ER, G6P is hydrolyzed to glucose and phosphate by either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α) or the ubiquitously expressed G6Pase-β.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the liver, kidney, and intestine. G6Pase-α catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis, and is a key enzyme for endogenous glucose production. The active site of G6Pase-α is inside the endoplasmic reticulum (ER) lumen.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis.

View Article and Find Full Text PDF

Glycogen storage disease type-Ib (GSD-Ib), deficient in the glucose-6-phosphate transporter (G6PT), is characterized by impaired glucose homeostasis, myeloid dysfunction, and long-term risk of hepatocellular adenoma (HCA). We examined the efficacy of G6PT gene therapy in G6pt-/- mice using recombinant adeno-associated virus (rAAV) vectors, directed by either the G6PC or the G6PT promoter/enhancer. Both vectors corrected hepatic G6PT deficiency in murine GSD-Ib but the G6PC promoter/enhancer was more efficacious.

View Article and Find Full Text PDF

A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia) is characterized by impaired glucose homeostasis and long-term risks of hepatocellular adenoma (HCA) and carcinoma (HCC). We have shown that the non-tumor-bearing (NT), recombinant adeno-associated virus (rAAV) vector-treated GSD-Ia mice (AAV-NT mice) expressing a wide range (0.9-63%) of normal hepatic glucose-6-phosphatase-α activity maintain glucose homeostasis and display physiologic features mimicking animals living under calorie restriction (CR).

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA) and carcinoma (HCC), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). We have previously shown that G6pc-/- mice receiving gene transfer mediated by rAAV-G6PC, a recombinant adeno-associated virus (rAAV) vector expressing G6Pase-α, and expressing 3-63% of normal hepatic G6Pase-α activity maintain glucose homeostasis and do not develop HCA/HCC. However, the threshold of hepatic G6Pase-α activity required to prevent tumor formation remained unknown.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSD-Ib), characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction, is an inherited autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Neutrophils play an essential role in the defense against invading pathogens. The recruitment of neutrophils towards the inflammation sites in response to inflammatory stimuli is a tightly regulated process involving rolling, adhesion, and transmigration.

View Article and Find Full Text PDF

Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70-90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc (-/-) mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy.

View Article and Find Full Text PDF

Glycogen storage disease type-Ia (GSD-Ia) is caused by a lack of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. We have shown that gene therapy mediated by a recombinant adeno-associated virus (rAAV) vector expressing human G6Pase-α normalizes blood glucose homeostasis in the global G6pc knockout (G6pc(-/-)) mice for 70-90 weeks. The treated G6pc(-/-) mice expressing 3-63% of normal hepatic G6Pase-α activity (AAV mice) produce endogenous hepatic glucose levels 61-68% of wild-type littermates, have a leaner phenotype and exhibit fasting blood insulin levels more typical of young adult mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: