Publications by authors named "Janice Brissette"

Loss-of-function mutations in methyl-CpG binding protein 2 ( ) cause Rett syndrome, a postnatal neurodevelopmental disorder that occurs in ∼1/10,000 live female births. MeCP2 binds to methylated cytosines across genomic DNA and recruits various partners to regulate gene expression. MeCP2 has been shown to repress transcription and interacts with co-repressors such as the Sin3A and NCoR complexes.

View Article and Find Full Text PDF

A primary goal of biomedical research is to elucidate molecular mechanisms, particularly those responsible for human traits, either normal or pathological. Yet achieving this goal is difficult if not impossible when the traits of interest lack tractable models and so cannot be dissected through time-honoured approaches like forward genetics or reconstitution. Arguably, no biological problem has hindered scientific progress more than this: the inability to dissect a trait's mechanism without a tractable likeness of the trait.

View Article and Find Full Text PDF

A long-standing problem in biology is how to dissect traits for which no tractable model exists. Here, we screen for genes like the nude locus (Foxn1)-genes central to mammalian hair and thymus development-using animals that never evolved hair, thymi, or Foxn1. Fruit flies are morphologically disrupted by the FOXN1 transcription factor and rescued by weak reductions in fly gene function, revealing molecules that potently synergize with FOXN1 to effect dramatic, chaotic change.

View Article and Find Full Text PDF

Environmental challenges to epithelial cells trigger gene expression changes that elicit context-appropriate immune responses. We found that the chromatin remodeler Mi-2β controls epidermal homeostasis by regulating the genes involved in keratinocyte and immune-cell activation to maintain an inactive state. Mi-2β depletion resulted in rapid deployment of both a pro-inflammatory and an immunosuppressive response in the skin.

View Article and Find Full Text PDF

p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63.

View Article and Find Full Text PDF

The pigmentation of mammalian skin and hair develops through the interaction of two basic cell types - pigment donors and recipients. The pigment donors are melanocytes, which produce and distribute melanin through specialized structures. The pigment recipients are epithelial cells, which acquire melanin and put it to use, collectively yielding the pigmentation visible to the eye.

View Article and Find Full Text PDF

Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss.

View Article and Find Full Text PDF

Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor-3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs.

View Article and Find Full Text PDF

Harlequin ichthyosis is a congenital scaling syndrome of the skin in which affected infants have epidermal hyperkeratosis and a defective permeability barrier. Mutations in the gene encoding a member of the ABCA transporter family, ABCA12, have been linked to harlequin ichthyosis, but the molecular function of the protein is unknown. To investigate the activity of ABCA12, we generated Abca12 null mice and analyzed the impact on skin function and lipid content.

View Article and Find Full Text PDF

The mitogen-activated protein kinase p38 mediates cellular responses to injurious stress and immune signaling. Among the many p38 isoforms, p38 alpha is the most widely expressed in adult tissues and can be targeted by various pharmacological inhibitors. Here we investigated how p38 alpha activation is linked to cell type-specific outputs in mouse models of cutaneous inflammation.

View Article and Find Full Text PDF

Mammals generate external coloration via dedicated pigment-producing cells but arrange pigment into patterns through mechanisms largely unknown. Here, using mice as models, we show that patterns ultimately emanate from dedicated pigment-receiving cells. These pigment recipients are epithelial cells that recruit melanocytes to their position in the skin and induce the transfer of melanin.

View Article and Find Full Text PDF

The transcription factor Foxn1 (the product of the nude locus) promotes the terminal differentiation of epithelial cells in the epidermis and hair follicles. Activated early in terminal differentiation, Foxn1 can modulate the timing or order of trait acquisition, as it induces early features of epidermal differentiation while suppressing late features. Here, we identify protein kinase C (PKC) as a key target of Foxn1 in keratinocyte differentiation control.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP) signaling is involved in the regulation of a large variety of developmental programs, including those controlling organ sizes. Here, we show that transgenic (TG) mice overexpressing the BMP antagonist noggin (promoter, K5) are characterized by a marked increase in size of anagen hair follicles (HFs) and by the replacement of zig-zag and auchen hairs by awl-like hairs, compared with the age-matched WT controls. Markedly enlarged anagen HFs of TG mice show increased proliferation in the matrix and an increased number of hair cortex and medulla cells compared with WT HFs.

View Article and Find Full Text PDF

p63, a p53 family member, is essential for the development of various stratified epithelia and is one of the earliest markers of many ectodermal structures, including the epidermis, oral mucosa, apical ectodermal ridge, and mammary gland. Genetic regulatory mechanisms controlling p63 spatial expression during development have not yet been defined. Using a genomic approach, we identified an evolutionarily conserved cis-regulatory element, located 160 kb downstream of the first p63 exon, which functions as a keratinocyte-specific enhancer and is sufficient to recapitulate expression of the endogenous gene during mouse embryogenesis.

View Article and Find Full Text PDF

Signaling pathways regulating the differentiation program of epidermal cells overlap widely with those activated during apoptosis. How differentiating cells remain protected from premature death, however, is still poorly defined. We show here that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated at early stages of mouse keratinocyte differentiation both in culture and in the intact epidermis in vivo.

View Article and Find Full Text PDF

Hair pigmentation is controlled by tightly coordinated programs of melanin synthesis and involves signaling through the melanocortin type 1 receptor (MC-1R) that regulates the switch between pheomelanogenesis and eumelanogenesis. However, the involvement of other signaling systems, including the bone morphogenetic protein (BMP) pathway, in the control of hair pigmentation remains to be elucidated. To assess the effects of BMP signaling on hair pigmentation, transgenic mice overexpressing the BMP antagonist noggin (promoter: keratin 5) were generated.

View Article and Find Full Text PDF

In mammalian skin, hair follicles develop at regular intervals and with site-specific morphologies. This process generates distinct patterns of hair, but the mechanisms that establish these patterns remain largely unknown. Here we present evidence of follicular patterning by ectodysplasin-A1 (Eda-A1), a signaling protein necessary for the proper development of hair and other appendages.

View Article and Find Full Text PDF

Contact of developing sensory organs with the external environment is established via the formation of openings in the skin. During eye development, eyelids first grow, fuse and finally reopen, thus providing access for visual information to the retina. Here, we show that eyelid opening is strongly inhibited in transgenic mice overexpressing the bone morphogenetic protein (BMP) antagonist noggin from the keratin 5 (K5) promoter in the epidermis.

View Article and Find Full Text PDF

In mammalian skin, melanin is produced by melanocytes and transferred to epithelial cells, with the epithelial cells thought to receive pigment only and not generate it. Melanin formation requires the enzyme tyrosinase, which catalyzes multiple reactions in the melanin biosynthetic pathway. Here, we reassess cutaneous melanogenesis using tyramide-based tyrosinase assay (TTA), a simple test for tyrosinase activity in situ.

View Article and Find Full Text PDF

Loss-of-function mutations in Whn (Hfh11, Foxn1), a winged-helix/forkhead transcription factor, cause the nude phenotype, which is characterized by the abnormal morphogenesis of the epidermis, hair follicles, and thymus. To delineate the biochemical pathway of Whn, we investigated its upstream regulation and downstream effects using primary keratinocytes from wild-type and transgenic mice. The transgenic animals express whn from the involucrin promoter, which is active in keratinocytes undergoing terminal differentiation.

View Article and Find Full Text PDF