Front Biosci (Elite Ed)
January 2012
The association between breast cancer and modifiable health behaviors is well supported. At least one-half of all cancers are suggested to have a dietary component. It is not surprising therefore that many of the dietary agents and natural health products that have attracted the attentions of scientists and practitioners are now moving into clinical trials.
View Article and Find Full Text PDFThe estrogen receptor (ER), of which there are two forms, ERalpha and ERbeta, is a ligand-modulated transcription factor important in both normal biology and as a target for agents to prevent and treat breast cancer. Crystallographic studies of the ERalpha ligand-binding domain suggest that Leu-536 may be involved in hydrophobic interactions at the start of a helix, "helix 12," that is crucial in the agonist-stimulated activity of ERalpha, as well as in the ability of antagonists to block the activity of ERalpha. We found that certain mutations of Leu-536 increased the ligand-independent activity of ERalpha although greatly reducing or eliminating the agonist activity of 17beta-estradiol (E2) and 4-hydroxytamoxifen (4OHT), on an estrogen response element-driven and an AP-1-driven reporter.
View Article and Find Full Text PDFThe estrogen receptor alpha (ERalpha) signaling plays an essential role in breast cancer progression and endocrine therapy. Mitogen-activated protein kinase (MAPK/Erk1/2) has been implicated in ligand-independent activation of ER, resulting in the cross-talk between growth factor and ER mediated signaling. In this study, we examined the effect of the cross-talk on estradiol (E(2))-mediated signaling, tumor growth and its effect on anti-estrogen therapy.
View Article and Find Full Text PDFThe human estrogen receptor-alpha, a member of the nuclear receptor superfamily, is a ligand-regulated transcriptional modulator. Because comparatively little is known about the extreme carboxyl-terminal region of the estrogen receptor (F domain), we used secondary structure prediction to design mutations that delete the F domain (S554stop), disrupt a possible turn (G556L/G557L), and alter a predicted helix (S559A/E562A, Q565P), and we evaluated the effects of these mutations on hormone binding and transcription activation in response to estradiol and the mixed agonist/antagonist 4-hydroxytamoxifen. Mutations that deleted the F domain (S554stop) or targeted the predicted helix (S559A/E562A, Q565P) greatly reduced or eliminated the agonist activity of 4-hydroxytamoxifen.
View Article and Find Full Text PDF