Publications by authors named "Janhavi A Kolhe"

Here, we present a protocol for establishing a protein interactome based on close physical proximity to a target protein within live yeast cells. We describe steps for capturing both transient and stable binders by integrating a non-natural amino acid. We detail procedures for employing a site-directed method for labeling the surface that mediates protein associations and uncovers the binding sites on the interactors.

View Article and Find Full Text PDF

Molecular chaperones govern proteome health to support cell homeostasis. An essential eukaryotic component of the chaperone system is Hsp90. Using a chemical-biology approach, we characterized the features driving the Hsp90 physical interactome.

View Article and Find Full Text PDF

Chromosomes are selectively organized within the nuclei of interphase cells reflecting the current fate of each cell and are reorganized in response to various physiological cues to maintain homeostasis. Although substantial progress is being made to establish the various patterns of genome architecture, less is understood on how chromosome folding/positioning is achieved. Here, we discuss recent insights into the cellular mechanisms dictating chromatin movements including the use of epigenetic modifications and allosterically regulated transcription factors, as well as a nucleoskeleton system comprised of actin, myosin, and actin-binding proteins.

View Article and Find Full Text PDF

Movement of chromosome sites within interphase cells is critical for numerous pathways including RNA transcription and genome organization. Yet, a mechanism for reorganizing chromatin in response to these events had not been reported. Here, we delineate a molecular chaperone-dependent pathway for relocating activated gene loci in yeast.

View Article and Find Full Text PDF