Publications by authors named "Jangsoo Shim"

Somatic cell nuclear transfer (SCNT) is a useful tool for animal cloning, but the efficiency of producing viable offspring by SCNT is very low. To improve this efficiency in the production of cloned pigs, it is critical to understand the interactions between uterine function and cloned embryos during implantation. Lysophosphatidic acid (LPA) is a lipid mediator that plays an important role in the establishment of pregnancy in pigs; however, LPA production in the uterine endometrium of pigs carrying SCNT-cloned conceptuses has not been determined.

View Article and Find Full Text PDF

Prostaglandins (PGs) are important lipid mediators regulating various reproductive processes in many species. In pigs, the expression pattern of PGE2 and PGF2α metabolic enzymes and the regulatory mechanism controlling PGE2 and PGF2α levels in the uterus during pregnancy are not completely understood. This study determined endometrial expression of the genes (PLA2G4A, PTGS1, PTGS2, PTGES, PTGES2, PTGES3, AKR1B1, CBR1, and HPGD) involved in PGE2 and PGF2α metabolism during the estrous cycle and pregnancy and measured levels of PGE2 and PGF2α in uterine endometrial tissues and uterine flushings at the time of conceptus implantation in pigs.

View Article and Find Full Text PDF

Prostaglandins (PGs) are involved in many reproductive activities including luteolysis, maternal recognition of pregnancy, endometrial gene expression, conceptus development, and parturition in domestic animals. However, mechanisms by which PGE2 and PGF2alpha are modulated in the uterine endometrium and expression of ABCC4 and SLCO2A1, responsible for efficient transport of PGs across the cell membrane, in the endometrium during the estrous cycle and pregnancy are not fully understood in pigs. Therefore, we determined expression of ABCC4 and SLCO2A1, genes involved in transport of PGE2 and PGF2alpha in the uterine endometrium during the estrous cycle and pregnancy in pigs.

View Article and Find Full Text PDF

Cathepsins (CTSs), a family of lysosomal cysteine proteases, and their inhibitors, cystatins (CSTs), play a critical role in endometrial and placental tissue remodeling during the establishment and maintenance of pregnancy in many species including rodents, sheep, cow, and pigs. In this study, we determined expression of legumain (LGMN), a cathepsinmember, and its inhibitor, CST6, at the maternal-fetal interface in pigs. Expression of both LGMN and CST6 mRNAs increased during mid- to late pregnancy in the uterine endometrium.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA), a simple phospholipid, plays a critical role in the establishment of pregnancy in pigs. LPA production is mediated by the action of ENPP2, a secreted lysophospholipase D (lysoPLD) that converts lysophosphatidylcholine to LPA. However, the mechanism that regulates LPA production by ENPP2 in the porcine uterus is not well understood.

View Article and Find Full Text PDF

During embryo implantation in pigs, the uterine endometrium undergoes dramatic morphological and functional changes accompanied with dynamic gene expression. Since the greatest amount of embryonic losses occur during this period, it is essential to understand the expression and function of genes in the uterine endometrium. Although many reports have studied gene expression in the uterine endometrium during the estrous cycle and pregnancy, the pattern of global gene expression in the uterine endometrium in response to the presence of a conceptus (embryo/fetus and associated extraembryonic membranes) has not been completely determined.

View Article and Find Full Text PDF

During the implantation period, the porcine conceptus secretes interleukin-1beta (IL1B) that may be involved in the establishment of pregnancy in pigs. However, the regulatory mechanism for IL1B receptor expression and the function of IL1B in the uterine endometrium are not well elucidated. In this study, we determined IL1B receptor expression in the uterine endometrium of pigs during pregnancy.

View Article and Find Full Text PDF

Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6) and calbindin-D9k (S100G), are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy.

View Article and Find Full Text PDF

Successful pregnancy requires an appropriate intrauterine immune response to the conceptus, which is a semiallograft within the uterus. We reported that swine leukocyte antigen-DQA (SLA-DQA), a major histocompatibility complex (MHC) class II gene, is expressed in the uterine endometrium at the time of conceptus implantation in pigs. Because MHC molecules play critical roles in the immune system, SLA-DQ was hypothesized to be involved in immune regulation during pregnancy.

View Article and Find Full Text PDF