Publications by authors named "Jangmyung Lee"

A parallel fish school tracking based on multiple-feature fish detection has been proposed in this paper to obtain accurate movement trajectories of a large number of zebrafish. Zebrafish are widely adapted in many fields as an excellent model organism. Due to the non-rigid body, similar appearance, rapid transition, and frequent occlusions, vision-based behavioral monitoring is still a challenge.

View Article and Find Full Text PDF

A new tactile sensing module was proposed to sense the contact force and location of an object on a robot hand, which was attached on the robot finger. Three air pressure sensors are installed at the tip of the finger to detect the contacting force at the points. To obtain a nominal contact force at the finger from data from the three air pressure sensors, a force estimation was developed based upon the learning of a deep neural network.

View Article and Find Full Text PDF

This paper presents finite-time sliding mode control (FSMC) with predefined constraints for the tracking error and sliding surface in order to obtain robust positioning of a robot manipulator with input nonlinearity due to an unknown deadzone and external disturbance. An assumed model feedforward FSMC was designed to avoid tedious identification procedures for the manipulator parameters and to obtain a fast response time. Two constraint switching control functions based on the tracking error and finite-time sliding surface were added to the FSMC to guarantee the predefined tracking performance despite the presence of an unknown deadzone and disturbance.

View Article and Find Full Text PDF

In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields.

View Article and Find Full Text PDF

This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control.

View Article and Find Full Text PDF