Exploring the potential energy surface (PES) of molecular systems is important for comprehending their complex behaviors, particularly through the identification of various metastable states. However, the transition between these states is often hindered by substantial energy barriers, demanding prolonged molecular simulations that consume considerable computational resources. Our study introduces the gradient-based navigation (GradNav) algorithm, which accelerates the exploration of the energy surface and enables proper reconstruction of the PES.
View Article and Find Full Text PDFPorous membranes, either polymeric or two-dimensional materials, have been extensively studied because of their outstanding performance in many applications such as water filtration. Recently, inspired by the significant success of machine learning (ML) in many areas of scientific discovery, researchers have started to tackle the problem in the field of membrane design using data-driven ML tools. In this Mini Review, we summarize research efforts on three types of applications of machine learning in membrane design, including (1) membrane property prediction using ML, (2) gaining physical insight and drawing quantitative relationships between membrane properties and performance using explainable artificial intelligence, and (3) ML-guided design, optimization, or virtual screening of membranes.
View Article and Find Full Text PDFThe calculation of relative energy difference has significant practical applications, such as determining adsorption energy, screening for optimal catalysts with volcano plots, and calculating reaction energies. Although Density Functional Theory (DFT) is effective in calculating relative energies through systematic error cancellation, the accuracy of Graph Neural Networks (GNNs) in this regard remains uncertain. To address this, we analyzed ∼483 × 106 pairs of energy differences predicted by DFT and GNNs using the Open Catalyst 2020-Dense dataset.
View Article and Find Full Text PDF