Ordered π-columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external-stimuli-responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π-building blocks.
View Article and Find Full Text PDFCounterfeiting is conducted in almost every industry, and the losses caused by it are growing as today's world trade continues to increase. In an attempt to provide an efficient method to fight such counterfeiting, we herein demonstrate anti-counterfeit nanoscale fingerprints generated by randomly distributed nanowires. Specifically, we prepare silver nanowires coated with fluorescent dyes and cast them onto the surface of transparent PET film.
View Article and Find Full Text PDFCovalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets.
View Article and Find Full Text PDFConjugation of mussel-inspired catechol groups to various polymer backbones results in materials suitable as silicon anode binders. The unique wetness-resistant adhesion provided by the catechol groups allows the silicon nanoparticle electrodes to maintain their structure throughout the repeated volume expansion and shrinkage during lithiation cycling, thus facilitating substantially improved specific capacities and cycle lives of lithium-ion batteries.
View Article and Find Full Text PDFIn nature, complex and well-defined structures are constructed by the self-assembly of biomolecules. It has been shown that β-peptide foldamers can mimic natural peptides and self-assemble into three-dimensional molecular architectures thanks to their rigid and predictable helical conformation in solution. Using shorter foldamers, which can be prepared more easily than longer ones, to form such architectures is highly desirable, but shorter foldamers have been overlooked due to the seemingly inferior number of intramolecular hydrogen bonds to stabilize a folded state in solution.
View Article and Find Full Text PDFProtein-coated gold nanoparticles in suspension are excited by intense laser pulses to mimic the light-induced effect on biomolecules that occur in photothermal laser therapy with nanoparticles as photosensitizer. Ultrafast X-ray scattering employed to access the nanoscale structural modifications of the protein-nanoparticle hybrid reveals that the protein shell is expelled as a whole without denaturation at a laser fluence that coincides with the bubble formation threshold. In this ultrafast heating mediated by the nanoparticles, time-resolved scattering data show that proteins are not denatured in terms of secondary structure even at much higher temperatures than the static thermal denaturation temperature, probably because time is too short for the proteins to unfold and the temperature stimulus has vanished before this motion sets in.
View Article and Find Full Text PDFNative chemical ligation (NCL) is an emerging chemoselective chemistry that forms an amide bond by trans-thioesterification followed by intramolecular nucleophilic rearrangement between thioester and cysteine. The reaction is simple, occurs in a mild aqueous solution, and gives near-quantitative yields of a desired product. Since the first report in 1994, most studies involving the use of NCL have focused on the total synthesis of proteins to address fundamental questions pertaining to many aspects of protein science, such as folding, mirror images, and site-specific labeling of proteins, but applications of the NCL reaction for other areas remain largely unexplored.
View Article and Find Full Text PDFA nanolithographic approach based on hierarchical peptide self-assembly is presented. An aromatic peptide of N-(t-Boc)-terminated triphenylalanine is designed from a structural motif for the beta-amyloid associated with Alzheimer's disease. This peptide adopts a turnlike conformation with three phenyl rings oriented outward, which mediate intermolecular pi-pi stacking interactions and eventually facilitate highly crystalline bionanosphere assembly with both thermal and chemical stability.
View Article and Find Full Text PDFWe report a new type of molecular sensor using a Au nanowire (NW)-Au nanoparticles (NPs) conjugated system. The Au NW-NPs structure is fabricated by the self-assembly of biotinylated Au NPs on a biotinylated Au NW through avidin; this creates hot spots between NW and NPs that strongly enhance the Raman signal. The number of the Au NPs attached to the NW is reproducibly proportional to the concentration of the avidin, and is also proportional to the measured surface-enhanced Raman scattering (SERS) signals.
View Article and Find Full Text PDFSupramolecular assembly of small molecules via noncovalent interaction is useful for bottom-up construction of well-defined macroscopic structures. This approach is attracting increasing interest due to its high potential in manufacturing novel molecular electronic and optoelectronic devices. This Article describes the synthesis and functions of a sheet-shaped assembly from novel triphenylene-fused metal trigon conjugates.
View Article and Find Full Text PDFFabricating well-defined and highly reproducible platforms for surface-enhanced Raman scattering (SERS) is very important in developing practical SERS sensors. We report a novel SERS platform composed of a single metallic nanowire (NW) on a metallic film. Optical excitation of this novel sandwich nanostructure provides a line of SERS hot spots (a SERS hot line) at the gap between the NW and the film.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2008
Cr(CO)n (n = 1-6) systems were studied for all possible spin states using density functional and high-level ab initio methods to provide a more complete theoretical understanding of the structure of species that may form during ligand dissociation of Cr(CO)6. We carried out geometry optimizations for each system and obtained vibrational frequencies, sequential bond dissociation energies (BDE), and total CO binding energies. We also compared the performance of various DFT functionals.
View Article and Find Full Text PDF