A soft morphing ray propulsor capable of generating an undulating motion in its pectoral fins was designed and fabricated. The propulsor used shape memory alloy for actuation, and the body was made with soft polymers. To determine the effects of undulation in the fins, two models that differed in terms of the presence of undulation were fabricated using different polymer materials.
View Article and Find Full Text PDFThis paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas.
View Article and Find Full Text PDFShape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations.
View Article and Find Full Text PDFBioinspir Biomim
October 2014
A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion.
View Article and Find Full Text PDF