Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic‑nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles.
View Article and Find Full Text PDFThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (NO) cycles from greenhouse gases. We investigated WAO NO dynamics through an intensive and precise NO survey during the open-water season of summer 2017. The effects of physical processes (i.
View Article and Find Full Text PDFMarian Cove is experiencing some of the most rapid environmental changes in the Antarctic region; however, little is known about the response of bacterial communities to these changes. The main purpose of this study was to investigate the spatial variation of physical‒biogeochemical‒bacterial community features in the Marian Cove surface waters and the environmental parameters governing the spatial variation in the bacterial community composition during the summer of 2018. The Marian Cove surface waters are largely composed of two different characteristics of water masses: relatively low-temperature, -salinity, and -nutrient surface glacier water (named SGW) and relatively high-temperature, -salinity, and -nutrient surface Maxwell Bay water (named SMBW).
View Article and Find Full Text PDF