Nexus approaches provide an efficient way to analyze the dynamic evolution of the water-energy-food nexus (WEFN), yet there is a need to close the science-policy divide by making simulation models more practically relevant. This study incorporates society, economy and environment systems (SEE) into the WEFN, simulating a broad environmental system. A system dynamics model is constructed to simulate and dynamically track the development of the WEF-SEE system in Hunan Province, China.
View Article and Find Full Text PDFThe water-energy-food (WEF) nexus is a complex system operating at many scales, the importance of which is increasingly recognized in academia and policy. There are calls to expand the nexus to include land and climate (WEFLC) as well as to narrow the science-policy divide, implying conducting assessments at policy-relevant scales to assess the impacts of policy objectives. This paper presents a national-scale WEFLC nexus system dynamics modelling assessment for Latvia.
View Article and Find Full Text PDFWater scarcity exacerbated by growing demand in different sectors has created environmental, social, and economic challenges in the Urmia Lake Basin, Iran. Tackling this problem requires an integrated approach considering the basin as an interconnected system where a change in one sector affects others. Here, a System Dynamics Model is developed to simulate the water-energy-food nexus in the Urmia Lake Basin as a holistic multi-sectoral system and to assess the impacts of proposed lake restoration measures, especially looking for trade-offs.
View Article and Find Full Text PDFGlobal urbanisation will put considerable stress on both water and energy resources. While there is much research at the national and regional levels on the energy implications of water supply (the urban water-energy 'nexus'), there is relatively little at the city scale. This literature is further diminished when attempting to account for the climate impact of urban water systems.
View Article and Find Full Text PDFMany (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g.
View Article and Find Full Text PDFCLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors.
View Article and Find Full Text PDFA System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region.
View Article and Find Full Text PDF