Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein-ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) and topoisomerase IIα (TopoIIα) are members of the GHKL protein superfamily, both with clinically validated roles as anticancer drug targets. We report the discovery of the first class of dual inhibitors targeting the ATP-binding site of TopoIIα and the C-terminal domain of Hsp90, displaying potent cancer growth inhibition both in vitro and in vivo. Initially, a known TopoIIα inhibitor, compound 3, was shown to bind to the C-terminal domain of Hsp90, but not to its ATP-binding N-terminal domain.
View Article and Find Full Text PDFDue to their impact on several oncogenic client proteins, the Hsp90 family of chaperones has been widely studied for the development of potential anticancer agents. Although several Hsp90 inhibitors have entered clinical trials, most were unsuccessful because they induced a heat shock response (HSR). This issue can be circumvented by using isoform-selective inhibitors, but the high similarity in the ATP-binding sites between the isoforms presents a challenge.
View Article and Find Full Text PDFThis study presents the discovery of a new series of -phenylpyrrolamide inhibitors of bacterial DNA gyrase with improved antibacterial activity. The most potent inhibitors had low nanomolar IC values against DNA gyrase (IC; 2-20 nM) and topoisomerase IV (22i, IC = 143 nM). Importantly, none of the compounds showed activity against human DNA topoisomerase IIα, indicating selectivity for bacterial targets.
View Article and Find Full Text PDFIn this work, we describe an improved series of N-phenylpyrrolamide inhibitors that exhibit potent activity against DNA gyrase and are highly effective against high-priority gram-positive bacteria. The most potent compounds show low nanomolar IC values against Escherichia coli DNA gyrase, and in addition, compound 7c also inhibits E. coli topoisomerase IV in the nanomolar concentration range, making it a promising candidate for the development of potent dual inhibitors for these enzymes.
View Article and Find Full Text PDFN-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E.
View Article and Find Full Text PDFThe human voltage-gated proton channel, hH1, is highly expressed in various cell types including macrophages, B lymphocytes, microglia, sperm cells and also in various cancer cells. Overexpression of H1 has been shown to promote tumor formation by highly metastatic cancer cells, and has been associated with neuroinflammatory diseases, immune response disorders and infertility, suggesting a potential use of hH1 inhibitors in numerous therapeutic areas. To identify compounds targeting this channel, we performed a structure-based virtual screening on an open structure of the human H1 channel.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2024
Benzothiazole-based bacterial DNA gyrase and topoisomerase IV inhibitors are promising new antibacterial agents with potent activity against Gram-positive and Gram-negative bacterial strains. The aim of this study was to improve the uptake of these inhibitors into the cytoplasm of Gram-negative bacteria by conjugating them to the small siderophore mimics. The best conjugate 18b displayed potent DNA gyrase and topoisomerase IV inhibition.
View Article and Find Full Text PDFWe present a new series of 2-aminobenzothiazole-based DNA gyrase B inhibitors with promising activity against ESKAPE bacterial pathogens. Based on the binding information extracted from the cocrystal structure of DNA gyrase B inhibitor , in complex with GyrB24, we expanded the chemical space of the benzothiazole-based series to the C5 position of the benzothiazole ring. In particular, compound showed low nanomolar inhibition of DNA gyrase (IC < 10 nM) and broad-spectrum antibacterial activity against pathogens belonging to the ESKAPE group, with the minimum inhibitory concentration < 0.
View Article and Find Full Text PDFVoltage-gated potassium channel K1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca homeostasis. Here, we present the structure-activity relationship, K1.
View Article and Find Full Text PDFATP-competitive inhibitors of human DNA topoisomerase II show potential for becoming the successors of topoisomerase II poisons, the clinically successful anticancer drugs. Based on our recent screening hits, we designed, synthesized and biologically evaluated new, improved series of N-phenylpyrrolamide DNA topoisomerase II inhibitors. Six structural classes were prepared to systematically explore the chemical space of N-phenylpyrrolamide based inhibitors.
View Article and Find Full Text PDFWe have developed compounds with a promising activity against and , which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor , we identified compound , featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from and , a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of in complex with GyrB24 and ()- in complex with GyrB23 and GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2022
Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.
View Article and Find Full Text PDFDue to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2021
DNA gyrase is an important target for the development of novel antibiotics. Although ATP-competitive DNA gyrase (GyrB) inhibitors are a well-studied class of antibacterial agents, there is currently no representative used in therapy, largely due to unwanted off-target activities. Selectivity of GyrB inhibitors against closely related human ATP-binding enzymes should be evaluated early in development to avoid off-target binding to homologous binding domains.
View Article and Find Full Text PDFCancer chemotherapy is affected by a modest selectivity and toxic side effects of pharmacological interventions. Among novel approaches to overcome this limitation and to bring to therapy more potent and selective agents is the use of light for selective activation of anticancer compounds. In this review, we focus on the anticancer applications of two light-activated approaches still in the experimental phase: photoremovable protecting groups ("photocages") and photoswitches.
View Article and Find Full Text PDFFragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots.
View Article and Find Full Text PDFA practical access to four new halogen-substituted pyrrole building blocks was realized in two to five synthetic steps from commercially available starting materials. The target compounds were prepared on a 50 mg to 1 g scale, and their conversion to nanomolar inhibitors of bacterial DNA gyrase B was demonstrated for three of the prepared building blocks to showcase the usefulness of such chemical motifs in medicinal chemistry.
View Article and Find Full Text PDFThe rise in multidrug-resistant bacteria defines the need for identification of new antibacterial agents that are less prone to resistance acquisition. Compounds that simultaneously inhibit multiple bacterial targets are more likely to suppress the evolution of target-based resistance than monotargeting compounds. The structurally similar ATP binding sites of DNA gyrase and topoisomerase Ⅳ offer an opportunity to accomplish this goal.
View Article and Find Full Text PDFA series of eleven 9-acridinyl amino acid derivatives were synthesized using a two-step procedure. Cytotoxicity was tested on the K562 and A549 cancer cell lines and normal diploid cell line MRC5 using the MTT assay. Compounds , , and were the most active, with IC values comparable to or lower than that of chemotherapeutic agent amsacrine.
View Article and Find Full Text PDFThe discovery of multi-targeting ligands of bacterial enzymes is an important strategy to combat rapidly spreading antimicrobial resistance. Bacterial DNA gyrase and topoisomerase IV are validated targets for the development of antibiotics. They can be inhibited at their catalytic sites or at their ATP binding sites.
View Article and Find Full Text PDF