Publications by authors named "Janet S Duerr"

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier.

View Article and Find Full Text PDF

In Caenorhabditis elegans, the cha-1 gene encodes choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine. We have analyzed a large number of cha-1 hypomorphic mutants, most of which are missense alleles. Some homozygous cha-1 mutants have approximately normal ChAT immunoreactivity; many other alleles lead to consistent reductions in synaptic immunostaining, although the residual protein appears to be stable.

View Article and Find Full Text PDF

A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17.

View Article and Find Full Text PDF

The nematode C. elegans is a useful model organism for studying neuronal development and function due to its extremely simple, well-defined nervous system, translucence, short life cycle, and abundance of genetic tools (WormBase. http://wormbase.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding connectivity in the nervous system is crucial for grasping its overall function, and this study focuses on the connectomes of the nematode C. elegans, a key model for neuroscience.
  • The research features updated quantitative connectivity matrices that include connections from sensory inputs to outputs, highlighting differences between adult male and female nervous systems.
  • It reveals that while some neurons are shared between sexes, they exhibit differences in structure and strength of connections, implicating both sexual and non-sexual pathways in behavior generation.
View Article and Find Full Text PDF

To stain C. elegans with antibodies, the relatively impermeable cuticle must be bypassed by chemical or mechanical methods. "Freeze-cracking" is one method used to physically pull the cuticle from nematodes by compressing nematodes between two adherent slides, freezing them, and pulling the slides apart.

View Article and Find Full Text PDF

The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17.

View Article and Find Full Text PDF

The neurotransmitter acetylcholine (ACh) is specifically synthesized by the enzyme choline acetyltransferase (ChAT). Subsequently, it is loaded into synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). We have generated antibodies that recognize ChAT or VAChT in a model organism, the nematode Caenorhabditis elegans, in order to examine the subcellular and cellular distributions of these cholinergic proteins.

View Article and Find Full Text PDF

Synaptotagmin 1, encoded by the snt-1 gene in Caenorhabditis elegans, is a major synaptic vesicle protein containing two Ca(2+)-binding (C2) domains. Alternative splicing gives rise to two synaptotagmin 1 isoforms, designated SNT-1A and SNT-1B, which differ in amino acid sequence in the third, fourth, and fifth beta-strands of the second C2 domain (C2B). We report here that expression of either SNT-1 isoform under control of a strong pan-neural promoter fully rescues the snt-1 null phenotype.

View Article and Find Full Text PDF

Acetylcholine, a major excitatory neurotransmitter in Caenorhabditis elegans, is transported into synaptic vesicles by the vesicular acetylcholine transporter encoded by unc-17. The abnormal behavior of unc-17(e245) mutants, which have a glycine-to-arginine substitution in a transmembrane domain, is markedly improved by a mutant synaptobrevin with an isoleucine-to-aspartate substitution in its transmembrane domain. These results suggest an association of vesicular soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) components with vesicular neurotransmitter transporters.

View Article and Find Full Text PDF