Publications by authors named "Janet R Mullen"

The repair of double-stranded DNA breaks (DSBs) by homologous recombination involves the formation of branched intermediates that can lead to crossovers following nucleolytic resolution. The nucleases Mus81-Mms4 and Yen1 are tightly controlled during the cell cycle to limit the extent of crossover formation and preserve genome integrity. Here we show that Yen1 is further regulated by sumoylation and ubiquitination.

View Article and Find Full Text PDF

Protein modification by the small ubiquitin-like modifier (SUMO) plays important roles in genome maintenance. In , proper regulation of sumoylation is known to be essential for viability in certain DNA repair mutants. Here, we find the opposite result; proper regulation of sumoylation is lethal in certain DNA repair mutants.

View Article and Find Full Text PDF

Saccharomyces cerevisiae cells lacking the Slx5-Slx8 SUMO-targeted Ub ligase display increased levels of sumoylated and polysumoylated proteins, and they are inviable in the absence of the Sgs1 DNA helicase. One explanation for this inviability is that one or more sumoylated proteins accumulate to toxic levels in sgs1Δ slx5Δ cells. To address this possibility, we isolated a second-site suppressor of sgs1Δ slx5Δ synthetic lethality and identified it as an allele of the ULP2 SUMO isopeptidase.

View Article and Find Full Text PDF

Protein sumoylation plays an important but poorly understood role in controlling genome integrity. In Saccharomyces cerevisiae, the Slx5-Slx8 SUMO-targeted Ub ligase appears to be needed to ubiquitinate sumoylated proteins that arise in the absence of the Sgs1 DNA helicase. WSS1, a high-copy-number suppressor of a mutant SUMO, was implicated in this pathway because it shares phenotypes with SLX5-SLX8 mutants, including a wss1Delta sgs1Delta synthetic-fitness defect.

View Article and Find Full Text PDF

Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5-Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5-Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function.

View Article and Find Full Text PDF

Genetic studies in budding yeast have previously implicated SLX5 and SLX8 in the control of genome stability and sumoylation. These genes encode RING-finger domain proteins that form a complex of unknown function. Because RING-finger proteins comprise a large class of ubiquitin (Ub) ligases, Slx5 and Slx8 were tested for this activity.

View Article and Find Full Text PDF

The yeast genes SLX5 and SLX8 were identified based on their requirement for viability in the absence of the Sgs1 DNA helicase. Loss of these genes results in genome instability, nibbled colonies, and other phenotypes associated with defects in sumoylation. The Slx5 and Slx8 proteins form a stable complex and each subunit contains a single RING-finger domain at its C-terminus.

View Article and Find Full Text PDF

SLX5 and SLX8 encode RING-finger proteins that were previously identified based on their requirement for viability in yeast cells lacking Sgs1 DNA helicase. Slx5 and Slx8 proteins are known to be required for genome stability and to physically interact in yeast extracts; however, their biochemical functions are unknown. To address this question we purified and characterized recombinant Slx5 and Slx8 proteins.

View Article and Find Full Text PDF

Genome stability requires a set of RecQ-Top3 DNA helicase-topoisomerase complexes whose sole budding yeast homolog is encoded by SGS1-TOP3. RMI1/NCE4 was identified as a potential intermediate in the SGS1-TOP3 pathway, based on the observation that strains lacking any one of these genes require MUS81 and MMS4 for viability. This idea was tested by confirming that sgs1 and rmi1 mutants display the same spectrum of synthetic lethal interactions, including the requirements for SLX1, SLX4, SLX5, and SLX8, and by demonstrating that rmi1 mus81 synthetic lethality is dependent on homologous recombination.

View Article and Find Full Text PDF

Mus81-Mms4 and Rad1-Rad10 are homologous structure-specific endonucleases that cleave 3' branches from distinct substrates and are required for replication fork stability and nucleotide excision repair, respectively, in the yeast Saccharomyces cerevisiae. We explored the basis of this biochemical and genetic specificity. The Mus81-Mms4 cleavage site, a nick 5 nucleotides (nt) 5' of the flap, is determined not by the branch point, like Rad1-Rad10, but by the 5' end of the DNA strand at the flap junction.

View Article and Find Full Text PDF