Hypoxia is associated with resistance to radiotherapy and chemotherapy in malignant gliomas, and it can be imaged by positron emission tomography with F-fluoromisonidazole (F-FMISO). Previous results for patients with brain cancer imaged with F-FMISO at a single center before conventional chemoradiotherapy showed that tumor uptake via T/Bmax (tissue SUVmax/blood SUV) and hypoxic volume (HV) was associated with poor survival. However, in a multicenter clinical trial (ACRIN 6684), traditional uptake parameters were not found to be prognostically significant, but tumor SUVpeak did predict survival at 1 year.
View Article and Find Full Text PDFBlood flow-metabolism mismatch from dynamic positron emission tomography (PET) studies with [Formula: see text]-labeled water ([Formula: see text]) and [Formula: see text]-labeled fluorodeoxyglucose (FDG) has been shown to be a promising diagnostic for locally advanced breast cancer (LABCa) patients. The mismatch measurement involves kinetic analysis with the arterial blood time course (AIF) as an input function. We evaluate the use of a statistical method for AIF extraction (SAIF) in these studies.
View Article and Find Full Text PDFUnlabelled: (18)F-fluoromisonidazole ((18)F-FMISO) is the most widely used PET agent for imaging hypoxia, a condition associated with resistance to tumor therapy. (18)F-FMISO equilibrates in normoxic tissues but is retained under hypoxic conditions because of reduction and binding to macromolecules. A simple tissue-to-blood (TB) ratio is suitable for quantifying hypoxia.
View Article and Find Full Text PDFKinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue.
View Article and Find Full Text PDF