Publications by authors named "Janet M Thornton"

There are many occurrences of enzymes catalysing the same reaction but having significantly different structures. Leveraging the comprehensive information on enzymes stored in the Mechanism and Catalytic Site Atlas (M-CSA), we present a collection of 34 cases for which there is sufficient evidence of functional convergence without an evolutionary link. For each case, we compare enzymes which have identical Enzyme Commission numbers (i.

View Article and Find Full Text PDF

Enzymes have been shaped by evolution over billions of years to catalyse the chemical reactions that support life on earth. Dispersed in the literature, or organised in online databases, knowledge about enzymes can be structured in distinct dimensions, either related to their quality as biological macromolecules, such as their sequence and structure, or related to their chemical functions, such as the catalytic site, kinetics, mechanism, and overall reaction. The evolution of enzymes can only be understood when each of these dimensions is considered.

View Article and Find Full Text PDF

Over the years, hundreds of enzyme reaction mechanisms have been studied using experimental and simulation methods. This rich literature on biological catalysis is now ripe for use as the foundation of new knowledge-based approaches to investigate enzyme mechanisms. Here, we present a tool able to automatically infer mechanistic paths for a given three-dimensional active site and enzyme reaction, based on a set of catalytic rules compiled from the Mechanism and Catalytic Site Atlas, a database of enzyme mechanisms.

View Article and Find Full Text PDF

Enzyme catalysis is governed by a limited toolkit of residues and organic or inorganic co-factors. Therefore, it is expected that recurring residue arrangements will be found across the enzyme space, which perform a defined catalytic function, are structurally similar and occur in unrelated enzymes. Leveraging the integrated information in the Mechanism and Catalytic Site Atlas (M-CSA) (enzyme structure, sequence, catalytic residue annotations, catalysed reaction, detailed mechanism description), 3D templates were derived to represent compact groups of catalytic residues.

View Article and Find Full Text PDF
Article Synopsis
  • The Novo Nordisk Foundation has decided to stop funding the Center for Protein Research in Copenhagen.
  • This decision raises questions about the level of commitment both public and private sectors have towards supporting fundamental scientific research.
  • The situation highlights the importance of ongoing discussions about how to ensure adequate funding for vital research initiatives.
View Article and Find Full Text PDF

Bulk transcriptomes are an essential data resource for understanding basic and disease biology. However, integrating information from different experiments remains challenging because of the batch effect generated by various technological and biological variations in the transcriptome. Numerous batch-correction methods to deal with this batch effect have been developed in the past.

View Article and Find Full Text PDF

Unlabelled: Enzyme reactions take place in the active site through a series of catalytic steps, which are collectively termed the enzyme mechanism. The catalytic step is thereby the individual unit to consider for the purposes of building new enzyme mechanisms - i.e.

View Article and Find Full Text PDF

The drug discovery process involves designing compounds to selectively interact with their targets. The majority of therapeutic targets for low molecular weight (small molecule) drugs are proteins. The outstanding accuracy with which recent artificial intelligence methods compile the three-dimensional structure of proteins has made protein targets more accessible to the drug design process.

View Article and Find Full Text PDF

Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases.

View Article and Find Full Text PDF
Article Synopsis
  • Most proteins fold into unique 3D shapes that dictate their functions within cells, and new computational methods, like AlphaFold2, have achieved high accuracy in predicting these structures, rivaling experimental results.
  • The study evaluates AlphaFold2's effectiveness in various applications, such as analyzing protein features, understanding how mutations affect function, and modeling interactions and experimental data.
  • It concludes that AlphaFold2 can model more structural details than traditional methods and performs well across different research applications, potentially transforming the field of structural biology and life sciences.
View Article and Find Full Text PDF

Structural templates are 3D signatures representing protein functional sites, such as ligand binding cavities, metal coordination motifs, or catalytic sites. Here we explore methods to generate template libraries and algorithms to query structures for conserved 3D motifs. Applications of templates are discussed, as well as some exemplar cases for examining evolutionary links in enzymes.

View Article and Find Full Text PDF

Proteins are essential macromolecules for the maintenance of living systems. Many of them perform their function by interacting with other molecules in regions called binding sites. The identification and characterization of these regions are of fundamental importance to determine protein function, being a fundamental step in processes such as drug design and discovery.

View Article and Find Full Text PDF

Conformational variation in catalytic residues can be captured as alternative snapshots in enzyme crystal structures. Addressing the question of whether active site flexibility is an intrinsic and essential property of enzymes for catalysis, we present a comprehensive study on the 3D variation of active sites of 925 enzyme families, using explicit catalytic residue annotations from the Mechanism and Catalytic Site Atlas and structural data from the Protein Data Bank. Through weighted pairwise superposition of the functional atoms of active sites, we captured structural variability at single-residue level and examined the geometrical changes as ligands bind or as mutations occur.

View Article and Find Full Text PDF

The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS-CoV-2 virus protein structures in the PDB.

View Article and Find Full Text PDF

Enzymes play essential roles in all life processes and are used extensively in the biomedical and biotechnological fields. However, enzyme-related information is spread across multiple resources making its retrieval time-consuming. In response to this challenge, the Enzyme Portal has been established to facilitate enzyme research, by providing a freely available hub where researchers can easily find and explore enzyme-related information.

View Article and Find Full Text PDF

DNA-Damage Response (DDR) proteins are crucial for maintaining the integrity of the genome by identifying and repairing errors in DNA. Variants affecting their function can have severe consequences since failure to repair damaged DNA can result in cells turning cancerous. Here, we compare germline and somatic variants in DDR genes, specifically looking at their locations in the corresponding three-dimensional (3D) structures, Pfam domains, and protein-protein interaction interfaces.

View Article and Find Full Text PDF

The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task.

View Article and Find Full Text PDF

At first glance, longevity and immunity appear to be different traits that have not much in common except the fact that the immune system promotes survival upon pathogenic infection. Substantial evidence however points to a molecularly intertwined relationship between the immune system and ageing. Although this link is well-known throughout the animal kingdom, its genetic basis is complex and still poorly understood.

View Article and Find Full Text PDF

Age is a common risk factor in many diseases, but the molecular basis for this relationship is elusive. In this study we identified 4 disease clusters from 116 diseases in the UK Biobank data, defined by their age-of-onset profiles, and found that diseases with the same onset profile are genetically more similar, suggesting a common etiology. This similarity was not explained by disease categories, co-occurrences or disease cause-effect relationships.

View Article and Find Full Text PDF

Transposable elements (TEs) inflict numerous negative effects on health and fitness as they replicate by integrating into new regions of the host genome. Even though organisms employ powerful mechanisms to demobilize TEs, transposons gradually lose repression during aging. The rising TE activity causes genomic instability and was implicated in age-dependent neurodegenerative diseases, inflammation, and the determination of lifespan.

View Article and Find Full Text PDF

Reduced activity of insulin/insulin-like growth factor signaling (IIS) increases healthy lifespan among diverse animal species. Downstream of IIS, multiple evolutionarily conserved transcription factors (TFs) are required; however, distinct TFs are likely responsible for these effects in different tissues. Here we have asked which TFs can extend healthy lifespan within distinct cell types of the adult nervous system in Starting from published single-cell transcriptomic data, we report that (FKH) is endogenously expressed in neurons, whereas (FOXO) is expressed in glial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Reducing late-life health issues requires understanding diseases related to aging, known as aging-related diseases (ARDs), but identifying them has been difficult due to a lack of formal definitions.
  • A new framework using unsupervised machine learning and actuarial techniques was applied to health records from over 3 million individuals in England, successfully grouping 278 diseases into nine clusters based on when they tend to occur.
  • Four clusters showed significantly higher rates of disease onset with age, with median ages ranging from 57 to 82 years, and validation confirmed that most of these diseases are indeed aging-related, highlighting the prevalence of cardiovascular diseases and cancers.
View Article and Find Full Text PDF