Publications by authors named "Janet M Hope"

Antarctic climate warming and atmospheric CO rise during the last deglaciation may be attributed in part to sea ice reduction in the Southern Ocean. Yet, glacial-interglacial Antarctic sea ice dynamics and underlying mechanisms are poorly constrained, as robust sea ice proxy evidence is sparse. Here, we present a molecular biomarker-based sea ice record that resolves the spring/summer sea ice variability off East Antarctica during the past 40 thousand years (ka).

View Article and Find Full Text PDF

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago.

View Article and Find Full Text PDF

The oldest animals appear in the fossil record among Ediacara biota communities. They prelude animal-dominated ecosystems of the Phanerozoic and may hold clues to the appearance of modern animal phyla in the Cambrian explosion. However, little is known about the phylogeny of the Ediacaran organisms and even less about their diet and feeding behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The earliest animal-like organisms appeared in Ediacaran rocks around 571 million years ago.
  • Some researchers previously suggested that certain sterol molecules indicated demosponges were the first abundant animals over 635 million years ago.
  • New evidence shows that these sterols likely formed from algae, not sponges, pushing the earliest evidence for animals back to the latest Ediacaran period.
View Article and Find Full Text PDF

The discovery of mid-Proterozoic (1.8-0.8 billion years ago, Ga) indigenous biomarkers is a challenge, since biologically informative molecules of such antiquity are commonly destroyed by metamorphism or overprinted by drilling fluids and other anthropogenic petroleum products.

View Article and Find Full Text PDF

The Ediacara biota represents the first complex macroscopic organisms in the geological record, foreshadowing the radiation of eumetazoan animals in the Cambrian explosion. However, little is known about the contingencies that lead to their emergence, including the possible roles of nutrient availability and the quality of food sources. Here we present information on primary producers in the Ediacaran based on biomarker molecules that were extracted from sediments hosting Ediacaran macrofossils.

View Article and Find Full Text PDF

The dawn of animals remains one of the most mysterious milestones in the evolution of life. The fossil lipids 24-isopropylcholestane and 26-methylstigmastane are considered diagnostic for demosponges-arguably the oldest group of living animals. The widespread occurrence and high relative abundance of these biomarkers in Ediacaran sediments from 635-541 million years (Myr) ago have been viewed as evidence for the rise of animals to ecological importance approximately 100 Myr before their rapid Cambrian radiation.

View Article and Find Full Text PDF

The enigmatic Ediacara biota (571 million to 541 million years ago) represents the first macroscopic complex organisms in the geological record and may hold the key to our understanding of the origin of animals. Ediacaran macrofossils are as "strange as life on another planet" and have evaded taxonomic classification, with interpretations ranging from marine animals or giant single-celled protists to terrestrial lichens. Here, we show that lipid biomarkers extracted from organically preserved Ediacaran macrofossils unambiguously clarify their phylogeny.

View Article and Find Full Text PDF

The Ediacara biota (~575-541 million years ago) mark the emergence of large, complex organisms in the palaeontological record, preluding the radiation of modern animal phyla. However, their phylogenetic relationships, even at the domain level, remain controversial. We report the discovery of molecular fossils from organically preserved specimens of Beltanelliformis, demonstrating that they represent large spherical colonies of cyanobacteria.

View Article and Find Full Text PDF

Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.

View Article and Find Full Text PDF

The injection of analytes into a gas chromatography-mass spectrometry (GC-MS) system using dichloromethane (DCM) as solvent led to gradual deterioration of chromatographic signals, with significant tailing and loss of sensitivity for C17+ hydrocarbons. The injector, gas chromatograph and transfer line were excluded as causes. Normal peak shape could only be restored by the insertion of a cleaned MS ion source.

View Article and Find Full Text PDF