Publications by authors named "Janet M Baker"

Time is of the essence in how neural codes, synchronies, and oscillations might function in encoding, representation, transmission, integration, storage, and retrieval of information in brains. This Hypothesis and Theory article examines observed and possible relations between codes, synchronies, oscillations, and types of neural networks they require. Toward reverse-engineering informational functions in brains, prospective, alternative neural architectures incorporating principles from radio modulation and demodulation, active reverberant circuits, distributed content-addressable memory, signal-signal time-domain correlation and convolution operations, spike-correlation-based holography, and self-organizing, autoencoding anticipatory systems are outlined.

View Article and Find Full Text PDF

How the brain extracts words from auditory signals is an unanswered question. We recorded approximately 150 single and multi-units from the left anterior superior temporal gyrus of a patient during multiple auditory experiments. Against low background activity, 45% of units robustly fired to particular spoken words with little or no response to pure tones, noise-vocoded speech, or environmental sounds.

View Article and Find Full Text PDF

How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories.

View Article and Find Full Text PDF