Peripheral inflammation evokes functional and biochemical changes in the periphery and spinal cord which result in central sensitization and hypersensitivity. Inhibitory control systems from the rostral ventromedial medulla (RVM) are also activated. The present study investigates whether endogenous kappa-opioid receptor (KOPr) systems contribute to these neuroadaptations.
View Article and Find Full Text PDFElectrophysiological data suggest an involvement of rostral ventromedial medulla (RVM) GABA and glutamate (GLU) neurons in morphine analgesia. Direct evidence that extracellular concentrations of GABA or GLU are altered in response to mu opioid receptor (MOP-R) activation is, however, lacking. We used in vivo microdialysis to investigate this issue.
View Article and Find Full Text PDFAcute microinjection of mu-, delta-, or kappa-opioid receptor (MOPr, DOPr, KOPr) agonists into the rostral ventromedial medulla (RVM) produces antinociception. Thermal antinociception produced by MOPr and DOPr agonists is potentiated during inflammation [Hurley RW, Hammond DL. The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation.
View Article and Find Full Text PDF