Introduction: Effective infiltration of chimeric antigen receptor T (CAR-T) cells into solid tumors is critical for achieving a robust antitumor response and improving therapeutic outcomes. While CAR-T cell therapies have succeeded in hematologic malignancies, their efficacy in solid tumors remains limited due to poor tumor penetration and an immunosuppressive tumor microenvironment. This study aimed to evaluate the potential of low-dose radiotherapy (LDRT) administered before T-cell therapy to enhance the antitumor effect by promoting CAR-T cell infiltration.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20129-9.
View Article and Find Full Text PDFSystemic Lupus Erythematosus (SLE) is a chronic inflammatory autoimmune disease in which type I interferons (IFN) play a key role. The IFN response can be triggered when oxidized DNA engages the cytosolic DNA sensing platform cGAS-STING, but the repair mechanisms that modulate this process and govern disease progression are unclear. To gain insight into this biology, we interrogated the role of oxyguanine glycosylase 1 (OGG1), which repairs oxidized guanine 8-Oxo-2'-deoxyguanosine (8-OH-dG), in the pristane-induced mouse model of SLE.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells.
View Article and Find Full Text PDFIn the mouse model of atherosclerosis, female bone marrow chimera and mice developed significantly smaller lesions in the aortic sinus and decreased lipid content in aorta en face, but a similar protection was not observed in males. Ovariectomized female mice lost protection from atherosclerosis in the setting of NLRP3 deficiency, whereas atherosclerosis showed a greater dependency on NLRP3 in castrated males. Thus, castration increased the dependency of atherosclerosis on the NLRP3 inflammasome, suggesting that testosterone may block inflammation in atherogenesis.
View Article and Find Full Text PDFIn men, the incidence of melanoma rises rapidly after age 50, and nearly two thirds of melanoma deaths are male. The immune system is known to play a key role in controlling the growth and spread of malignancies, but whether age- and sex-dependent changes in immune cell function account for this effect remains unknown. Here, we show that in castrated male mice, neutrophil maturation and function are impaired, leading to elevated metastatic burden in two models of melanoma.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFObjective: Kawasaki disease (KD) is the leading cause of acute vasculitis and acquired heart disease in children in developed countries. Notably, KD is more prevalent in males than females. We previously established a key role for IL (interleukin)-1 signaling in KD pathogenesis, but whether this pathway underlies the sex-based difference in susceptibility is unknown.
View Article and Find Full Text PDFBrain glioma treatment with checkpoint inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4 (a-CTLA-4) and programmed cell death-1 (a-PD-1) was largely unsuccessful due to their inability to cross blood-brain barrier (BBB). Here we describe targeted nanoscale immunoconjugates (NICs) on natural biopolymer scaffold, poly(β-L-malic acid), with covalently attached a-CTLA-4 or a-PD-1 for systemic delivery across the BBB and activation of local brain anti-tumor immune response. NIC treatment of mice bearing intracranial GL261 glioblastoma (GBM) results in an increase of CD8+ T cells, NK cells and macrophages with a decrease of regulatory T cells (Tregs) in the brain tumor area.
View Article and Find Full Text PDFReceptor interacting protein 2 (RIP2) plays a role in sensing intracellular pathogens, but its function in T cells is unclear. We show that RIP2 deficiency in CD4 T cells resulted in chronic and severe interleukin-17A-mediated inflammation during Chlamydia pneumoniae lung infection, increased T helper 17 (Th17) cell formation in lungs of infected mice, accelerated atherosclerosis, and more severe experimental autoimmune encephalomyelitis. While RIP2 deficiency resulted in reduced conventional Th17 cell differentiation, it led to significantly enhanced differentiation of pathogenic (p)Th17 cells, which was dependent on RORα transcription factor and interleukin-1 but independent of nucleotide oligomerization domain (NOD) 1 and 2.
View Article and Find Full Text PDFDifferential diagnosis of brain magnetic resonance imaging (MRI) enhancement(s) remains a significant problem, which may be difficult to resolve without biopsy, which can be often dangerous or even impossible. Such MRI enhancement(s) can result from metastasis of primary tumors such as lung or breast, radiation necrosis, infections, or a new primary brain tumor (glioma, meningioma). Neurological symptoms are often the same on initial presentation.
View Article and Find Full Text PDFThe development of cancer is a multi-step process involving the gradual loss of regulation over the growth and functional capabilities of normal cells. Much research has been focused on the numerous cell intrinsic factors that govern this process; however, recent attention has turned to understanding the cell extrinsic factors in the tumor microenvironment that appear equally critical to the progression and treatment of cancer. One critical component of the tumor microenvironment is the immune system and it has become increasingly evident that the immune system plays an integral role in preventing and promoting the development of cancer.
View Article and Find Full Text PDFAdv Drug Deliv Rev
November 2013
Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles.
View Article and Find Full Text PDFEngineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker.
View Article and Find Full Text PDFAir pollution negatively impacts pulmonary, cardiovascular, and central nervous systems. Although its influence on brain cancer is unclear, toxic pollutants can cause blood-brain barrier disruption, enabling them to reach the brain and cause alterations leading to tumor development. By gene microarray analysis validated by quantitative RT-PCR and immunostaining we examined whether rat (n=104) inhalation exposure to air pollution particulate matter (PM) resulted in brain molecular changes similar to those associated with human brain tumors.
View Article and Find Full Text PDFPreviously, we established a model in which physiologically adequate function of the autologous β cells was recovered in non-obese diabetic (NOD) mice after the onset of hyperglycemia by rendering them hemopoietic chimera. These mice were termed antea-diabetic. In the current study, we addressed the role of T regulatory (Treg) cells in the mechanisms mediating the restoration of euglycemia in the antea-diabetic NOD model.
View Article and Find Full Text PDFTreatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform for TNBC treatment.
View Article and Find Full Text PDFHIV-1-based vectors are widely used in gene therapy. In somatic cells, these vectors mainly integrate within genes. However, no distinct integration site preferences have been observed with regard to large chromosomal regions.
View Article and Find Full Text PDF