Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders.
View Article and Find Full Text PDFRare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan.
View Article and Find Full Text PDFIntroduction: Cerebral visual impairment (CVI) is the most common cause of visual impairment in children in the UK. Diagnosis is based on identification of visual behaviours (ViBes) relating to visual dysfunction. Examination techniques and inventories have been developed to elicit these in children with a developmental age of two years or more.
View Article and Find Full Text PDFCharacterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.
View Article and Find Full Text PDFBackground: Recent breakthroughs in psychiatric genetics have implicated biological pathways onto which genetic risk for psychiatric disorders converges. However, these studies do not reveal the developmental time point(s) at which these pathways are relevant.
Methods: We aimed to determine the relationship between psychiatric risk and developmental gene expression relating to discrete biological pathways.
Defining the mechanisms involved in the aetiology of Alzheimer's disease from genome-wide association studies alone is challenging since Alzheimer's disease is polygenic and most genetic variants are non-coding. Non-coding Alzheimer's disease risk variants can influence gene expression by affecting miRNA binding and those located within enhancers and within CTCF sites may influence gene expression through alterations in chromatin states. In addition, their function can be cell-type specific.
View Article and Find Full Text PDFLate-onset Alzheimer's disease (LOAD), the most common cause of dementia, and a huge global health challenge, is a neurodegenerative disease of uncertain aetiology. To deliver effective diagnostics and therapeutics, understanding the molecular basis of the disease is essential. Contemporary large genome-wide association studies (GWAS) have identified over seventy novel genetic susceptibility loci for LOAD.
View Article and Find Full Text PDFNucleosome positioning is important for neurodevelopment, and genes mediating chromatin remodelling are strongly associated with human neurodevelopmental disorders. To investigate changes in nucleosome positioning during neural differentiation, we generate genome-wide nucleosome maps from an undifferentiated human-induced pluripotent stem cell (hiPSC) line and after its differentiation to the neural progenitor cell (NPC) stage. We find that nearly 3% of nucleosomes are highly positioned in NPC, but significantly, there are eightfold fewer positioned nucleosomes in pluripotent cells, indicating increased positioning during cell differentiation.
View Article and Find Full Text PDFCommon genetic variation contributes a substantial proportion of risk for both schizophrenia and bipolar disorder. Furthermore, there is evidence of significant, but not complete, overlap in genetic risk between the two disorders. It has been hypothesised that genetic variants conferring risk for these disorders do so by influencing brain development, leading to the later emergence of symptoms.
View Article and Find Full Text PDFWe have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone-like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T.
View Article and Find Full Text PDF