Type 1 diabetes in the NOD mouse model has been linked to >30 insulin-dependent diabetes (Idd) susceptibility loci. Idd4 on chromosome 11 consists of two subloci, Idd4.1 and Idd4.
View Article and Find Full Text PDFDespite growing evidence for a causal role of environmental factors in autoimmune diseases including the rise in disease frequencies over the past several decades we lack an understanding of how particular environmental exposures modify disease risk. In addition, many autoimmune diseases display sex-biased incidence, with females being disproportionately affected but the mechanisms underlying this sex bias remain elusive. Emerging evidence suggests that both host metabolism and immune function is crucially regulated by the intestinal microbiome.
View Article and Find Full Text PDFγδ T cells, a lineage of innate-like lymphocytes, are distinguished from conventional αβ T cells in their Ag recognition, cell activation requirements, and effector functions. γδ T cells have been implicated in the pathology of several human autoimmune and inflammatory diseases and their corresponding mouse models, but their specific roles in these diseases have not been elucidated. We report that γδ TCR(+) cells, including both the CD27(-)CD44(hi) and CD27(+)CD44(lo) subsets, infiltrate islets of prediabetic NOD mice.
View Article and Find Full Text PDFMicrobial exposures and sex hormones exert potent effects on autoimmune diseases, many of which are more prevalent in women. We demonstrate that early-life microbial exposures determine sex hormone levels and modify progression to autoimmunity in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D). Colonization by commensal microbes elevated serum testosterone and protected NOD males from T1D.
View Article and Find Full Text PDF