Publications by authors named "Janet F Forstner"

Burkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis (CF). Infection is often associated with severe pulmonary inflammation, and some patients develop a fatal necrotizing pneumonia and sepsis ('cepacia syndrome'). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood.

View Article and Find Full Text PDF

Burkholderia cenocepacia strains expressing both cable (Cbl) pili and the 22-kDa adhesin bind to cytokeratin 13 (CK13) strongly and invade squamous epithelium efficiently. It has not been established, however, whether the gene encoding the adhesin is located in the cbl operon or what specific contribution the adhesin and Cbl pili lend to binding and transmigration or invasion capacity of B. cenocepacia.

View Article and Find Full Text PDF

We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice.

View Article and Find Full Text PDF

Rat intestinal mucin Muc3 (rMuc3), like its human homologue (MUC3) and several other membrane mucins, contains a C-terminally located SEA (sea urchin sperm protein, enterokinase and agrin) module, with an intrinsic proteolytic site sequence G downward arrow SIVV (where G downward arrow S is the glycine serine cleavage site). As shown previously [Wang, Khatri and Forstner (2002) Biochem. J.

View Article and Find Full Text PDF

Within the C-terminal domain of many secretory mucins is a 'cystine knot' (CK), which is needed for dimer formation in the endoplasmic reticulum. Previous studies indicate that in addition to an unpaired cysteine, the three intramolecular cystine bonds of the knot are important for stability of the dimers formed by rat intestinal mucin Muc2. The present study was undertaken to determine whether the two N-glycans N9 and N10, located near the first and second cysteines of the knot, also play a role in dimer formation.

View Article and Find Full Text PDF

Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates.

View Article and Find Full Text PDF

In a previous study we showed, by transient expression studies in COS-1 cells, that the C-terminal domain of rat intestinal membrane mucin Muc3 was cleaved between glycine and serine within a GSIVV (one-letter) amino acid sequence during its residence in the endoplasmic reticulum. The extracellular domain fragment remained linked to the membrane-associated fragment by non-covalent interactions. The present study demonstrates that cleavage depends not only on the presence of the G/SIVV site (where G/S is the glycine downward arrow serine cleavage site), but also on more distant C-terminal sequences in the SEA (sea-urchin sperm protein, enterokinase and agrin) module.

View Article and Find Full Text PDF

Although human MUC3 and rodent Muc3 are both membrane-associated intestinal mucins, the present study has explored the possibility that rodent Muc3 might exist in soluble as well as membrane forms. No evidence was obtained for the existence of soluble splice variants; however, experiments with heterologous cells transfected with cDNA encoding the 381-residue C-terminal domain of rodent Muc3 showed that a definitive proteolytic cleavage occurs during processing in the endoplasmic reticulum. The products consisted of a V5-tagged 30 kDa extracellular glycopeptide and a Myc-tagged 49 kDa membrane-associated glycopeptide.

View Article and Find Full Text PDF