Background: Mechanosensing governs many processes from molecular to organismal levels, including during cytokinesis where it ensures successful and symmetrical cell division. Although many proteins are now known to be force sensitive, myosin motors with their ATPase activity and force-sensitive mechanical steps are well poised to facilitate cellular mechanosensing. For a myosin motor to experience tension, the actin filament must also be anchored.
View Article and Find Full Text PDFBackground: Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries.
View Article and Find Full Text PDFIntroduction: Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane.
View Article and Find Full Text PDFEssential life processes are heavily controlled by a variety of positive and negative feedback systems. Cytokinesis failure, ultimately leading to aneuploidy, is appreciated as an early step in tumor formation in mammals and is deleterious for all cells. Further, the growing list of cancer predisposition mutations includes a number of genes whose proteins control mitosis and/or cytokinesis.
View Article and Find Full Text PDFCytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures.
View Article and Find Full Text PDFBecause cell-division failure is deleterious, promoting tumorigenesis in mammals, cells utilize numerous mechanisms to control their cell-cycle progression. Though cell division is considered a well-ordered sequence of biochemical events, cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Given that cells respond to their mechanical environment, we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis.
View Article and Find Full Text PDFThe ultimate goal of all signaling pathways in cytokinesis is to control the mechanical separation of the mother cell into two daughter cells. Because of the intrinsic mechanical nature of cytokinesis, it is essential to understand fully how cell shapes and the material properties of the cell are generated, how these shapes and material properties create force, and how motor proteins such as myosin-II modify the system to achieve successful cytokinesis. In this review (which is part of the Cytokinesis series), we discuss the relevant physical properties of cells, how these properties are measured and the basic models that are used to understand cell mechanics.
View Article and Find Full Text PDF