We construct an algebraic-combinatorial model of the SOS compartment of the EGFR biochemical network. A Petri net is used to construct an initial representation of the biochemical decision making network, which in turn defines a hyperdigraph. We observe that the linear algebraic structure of each hyperdigraph admits a canonical set of algebraic-combinatorial invariants that correspond to the information flow conservation laws governing a molecular kinetic reaction network.
View Article and Find Full Text PDFWe have applied an algorithmic methodology which provably decomposes any complex network into a complete family of principal subcircuits to study the minimal circuits that describe the Krebs cycle. Every operational behavior that the network is capable of exhibiting can be represented by some combination of these principal subcircuits and this computational decomposition is linearly efficient. We have developed a computational model that can be applied to biochemical reaction systems which accurately renders pathways of such reactions via directed hypergraphs (Petri nets).
View Article and Find Full Text PDF