Publications by authors named "Janet A Komduur"

We have isolated the Hansenula polymorpha ATG25 gene, which is required for glucose-induced selective peroxisome degradation by macropexophagy. ATG25 represents a novel gene that encodes a 45 kDa coiled-coil protein. We show that this protein colocalizes with Atg11 on a small structure, which most likely represents the pre-autophagosomal structure (PAS).

View Article and Find Full Text PDF

Exposure of Hansenula polymorpha cells, grown in batch cultures on methanol at 37 degrees C, to a cold treatment (18 degrees C) is paralleled by a rapid degradation of peroxisomes present in these cells. Remarkably, the events accompanying organelle degradation at 18 degrees C are similar to those of selective glucose-induced peroxisome degradation in wild-type cells, described before. This observation was strengthened by the finding that cold-induced peroxisome degradation was not observed in mutants impaired in selective peroxisome degradation (Atg(-) mutants).

View Article and Find Full Text PDF

The hallmark of eukaryotic cells is compartmentalization of distinct cellular functions into specific organelles. This necessitates the cells to run energetically costly mechanisms to precisely control maintenance and function of these compartments. One of these continuously controls organelle activity and abundance, a process termed homeostasis.

View Article and Find Full Text PDF

Hansenula polymorpha PDD genes are involved in the selective degradation of peroxisomes via macropexophagy. We have isolated various novel pdd mutants by a gene-tagging method. Here we describe the isolation and characterisation of PDD7, which encodes a protein with high sequence similarity (40% identity) to Saccharomyces cerevisiae Apg1p/Aut3p, previously described to be involved in random autophagy and the cytoplasm-to-vacuole targeting pathway.

View Article and Find Full Text PDF

In the methylotrophic yeast, Hansenula polymorpha, peroxisomes are formed during growth on methanol as sole carbon and energy source and contain the key enzymes for its metabolism, one of the major enzymes being alcohol oxidase (AO). Upon a shift of these cells to glucose-containing medium, peroxisomes become redundant for growth and are rapidly degraded via a highly selective process designated macropexophagy. H.

View Article and Find Full Text PDF