Publications by authors named "Janene M Pierce"

Purpose: Regression of retinoblastoma vitreous seeds (VS) during intravitreal chemotherapy can be delayed, resulting in supernumerary injections. Similarly, VS relapse may not be clinically evident at first. A predictive biomarker of tumor regression and relapse could help guide real-time clinical decision making.

View Article and Find Full Text PDF

Purpose: Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity.

View Article and Find Full Text PDF

Purpose: Through controlled comparative rabbit experiments and parallel patient studies, our purpose was to understand mechanisms underlying differences in efficacy and toxicity between intra-arterial chemotherapy (IAC) and intravenous chemotherapy (IVC).

Methods: In rabbits, ocular tissue drug levels were measured following IAC and IVC. Retinal toxicity was assessed using electroretinography, fluorescein angiography, optical coherence tomography (OCT) and OCT angiography.

View Article and Find Full Text PDF

Current melphalan-based intravitreal chemotherapy regimens for retinoblastoma vitreous seeds are effective, but cause significant ocular toxicity. We describe protocols for each step of a drug discovery pipeline for preclinical development of novel drugs to maximize efficacy and minimize toxicity. These protocols include: 1) determination of vitreous pharmacokinetics , 2) assessment of drug cytotoxicity against retinoblastoma based on empiric pharmacokinetics, 3) back-calculation of minimum injection dose to achieve therapeutic concentrations, 4) determination of maximum-tolerable intravitreal dose, using a multimodal, structural and functional toxicity-assessment platform, and 5) determination of drug efficacy using a rabbit orthotopic xenograft model of retinoblastoma vitreous seeds.

View Article and Find Full Text PDF

Background: Current melphalan-based intravitreal regimens for retinoblastoma (RB) vitreous seeds cause retinal toxicity. We assessed the efficacy and toxicity of topotecan monotherapy compared with melphalan in our rabbit model and patient cohort.

Methods: Rabbit experiments: empiric pharmacokinetics were determined following topotecan injection.

View Article and Find Full Text PDF

The use of intravitreal chemotherapy has revolutionized the treatment of advanced intraocular retinoblastoma, as intravitreal melphalan has enabled difficult-to-treat vitreous tumor seeds to be controlled, leading to many more eyes being saved. However, melphalan hydrochloride (MH) degrades rapidly in solution, increasing logistical complexity with respect to time between medication preparation and administration for intravitreal administration under anesthesia for retinoblastoma. A new propylene glycol-free melphalan (PGFM) formulation has greater stability and could therefore improve access and adoption of intravitreal chemotherapy, allowing more children to retain their eye(s).

View Article and Find Full Text PDF

Background/purpose: Wilms tumor (WT) is the most common childhood kidney cancer globally. Our prior unbiased proteomic screen of WT disparities revealed increased expression of Fragile X-Related 1 (FXR1) in Kenyan specimens where survival is dismal. FXR1 is an RNA-binding protein that associates with poor outcomes in multiple adult cancers.

View Article and Find Full Text PDF

Purpose: To use our intra-arterial chemotherapy (IAC) rabbit model to assess the impact of IAC procedure, drug, dose, and choice of technique on ocular structure and function, to study the nature and etiology of IAC toxicity, and to compare to observations in patients.

Methods: Rabbits received IAC melphalan (0.4-0.

View Article and Find Full Text PDF

Background: Wilms tumor (WT) is the most common childhood kidney cancer worldwide, yet its incidence and clinical behavior vary according to race and access to adequate healthcare resources. To guide and streamline therapy in the war-torn and resource-constrained city of Baghdad, Iraq, we conducted a first-ever molecular analysis of 20 WT specimens to characterize the biological features of this lethal disease within this challenged population.

Methods: Next-generation sequencing of ten target genes associated with WT development and treatment resistance (WT1, CTNNB1, WTX, IGF2, CITED1, SIX2, p53, N-MYC, CRABP2, and TOP2A) was completed.

View Article and Find Full Text PDF

Purpose: Current intra-arterial chemotherapy (IAC) drug regimens for retinoblastoma have ocular and vascular toxicities. No small-animal model of IAC exists to test drug efficacy and toxicity in vivo for IAC drug discovery. The purpose of this study was to develop a small-animal model of IAC and to analyze the ocular tissue penetration, distribution, pharmacokinetics, and treatment efficacy.

View Article and Find Full Text PDF

Background: Liver regeneration following partial hepatectomy requires the orchestration of highly regulated molecular pathways; a change in the abundance or activity of a specific gene product has the potential to adversely affect this process. The nuclear factor of activated T-cells (NFAT) transcription factors represent a family of gene transcription signaling intermediates that translate receptor-dependent signaling events into specific transcriptional responses using the Ras/Raf pathway.

Materials And Methods: Eight-week old NFAT4 knockout (KO) mice and their wild type counterparts (Balb-c) underwent two-thirds partial hepatectomy.

View Article and Find Full Text PDF

Surgical resection remains the best treatment for colorectal metastases isolated to the liver; however, 5-year survival rates following liver resection are only 40% to 50%, with liver recurrence being a significant reason for treatment failure. The ischemia-reperfusion (I/R) injury incurred during liver surgery can lead to cellular dysfunction and elevations in proinflammatory cytokines and matrix metalloproteinases (MMP). In rodents, I/R injury to the liver has been shown to accelerate the outgrowth of implanted tumors.

View Article and Find Full Text PDF

Mammalian Orthoreoviruses are important models for studies of viral pathogenesis. In the rat lung, Reovirus strain type 3 Dearing (T3D) induces substantially more inflammation than does strain type 1 Lang (T1L). To better understand mechanisms underlying differences in the host inflammatory response elicited by T1L and T3D, we characterized cytokine expression patterns induced by those strains after infection of THP-1 monocyte cells.

View Article and Find Full Text PDF

Background: Graft failure due to cold ischemia (CI) injury remains a significant problem during liver transplantation. During CI, the consumption of ATP and the increase in cellular Ca concentration may result in mitochondrial Ca (mCa) overload through the mCa uniporter, which can ultimately lead to apoptosis and graft nonfunction. We recently identified phospholipase C-dl (PLC-dl) as a novel regulator of mCa uptake in the liver, and now extend those studies to examine the role of mitochondrial PLC in liver CI injury.

View Article and Find Full Text PDF

Reovirus infection activates NF-kappaB, which leads to programmed cell death in cultured cells and in the murine central nervous system. However, little is known about how NF-kappaB elicits this cellular response. To identify host genes activated by NF-kappaB following reovirus infection, we used HeLa cells engineered to express a degradation-resistant mutant of IkappaBalpha (mIkappaBalpha) under the control of an inducible promoter.

View Article and Find Full Text PDF

Reovirus induces apoptosis in cultured cells and in vivo. In cell culture models, apoptosis is contingent upon a mechanism involving reovirus-induced activation of transcription factor NF-kappaB complexes containing p50 and p65/RelA subunits. To explore the in vivo role of NF-kappaB in this process, we tested the capacity of reovirus to induce apoptosis in mice lacking a functional nfkb1/p50 gene.

View Article and Find Full Text PDF

Mitochondrial Ca2+ (mCa2+) handling is an important regulator of liver cell function that controls events ranging from cellular respiration and signal transduction to apoptosis. Cytosolic Ca2+ enters mitochondria through the ruthenium red-sensitive mCa2+ uniporter, but the mechanisms governing uniporter activity are unknown. Activation of many Ca2+ channels in the cell membrane requires PLC.

View Article and Find Full Text PDF