T Cell Receptor (TCR) antigen binding underlies a key mechanism of the adaptive immune response yet the vast diversity of TCRs and the complexity of protein interactions limits our ability to build useful low dimensional representations of TCRs. To address the current limitations in TCR analysis we develop a capacity-controlled disentangling variational autoencoder trained using a dataset of approximately 100 million TCR sequences, that we name TCR-VALID. We design TCR-VALID such that the model representations are low-dimensional, continuous, disentangled, and sufficiently informative to provide high-quality TCR sequence de novo generation.
View Article and Find Full Text PDFMonocytes are highly plastic immune cells that modulate antitumor immunity. Therefore, identifying factors that regulate tumor monocyte functions is critical for developing effective immunotherapies. Here, we determine that endogenous cancer cell-derived type I interferons (IFNs) control monocyte functional polarization.
View Article and Find Full Text PDFClinical observations suggest that responses to cancer immunotherapy are correlated with intra-tumoral T cell receptor (TCR) clonality, tumor mutation burden (TMB) and host HLA genotype, highlighting the importance of host T cell recognition of tumor antigens. However, the dynamic interplay between T cell activation state and changes in TCR repertoire in driving the identification of potential immunodominant antigen(s) remains largely unexplored. Here, we performed single-cell RNA-sequencing on CD8 tumor-infiltrating T cells (TILs) using the murine colorectal tumor model MC38 to identify unique TCR sequences and validate their tumor reactivity.
View Article and Find Full Text PDFMonoclonal antibodies that block the programmed cell death 1 (PD-1) checkpoint have revolutionized cancer immunotherapy. However, many major tumor types remain unresponsive to anti-PD-1 therapy, and even among responsive tumor types, most of the patients do not develop durable antitumor immunity. It has been shown that bispecific antibodies activate T cells by cross-linking the TCR/CD3 complex with a tumor-specific antigen (TSA).
View Article and Find Full Text PDFT cell activation is initiated upon binding of the T cell receptor (TCR)/CD3 complex to peptide-major histocompatibility complexes ("signal 1"); activation is enhanced by engagement of a second "costimulatory" receptor, such as the CD28 receptor on T cells binding to its cognate ligand(s) on the target cell ("signal 2"). CD3-based bispecific antibodies act by replacing conventional signal 1, linking T cells to tumor cells by binding a tumor-specific antigen (TSA) with one arm of the bispecific and bridging to TCR/CD3 with the other. Although some of these so-called TSAxCD3 bispecifics have demonstrated promising antitumor efficacy in patients with cancer, their activity remains to be optimized.
View Article and Find Full Text PDFProfiling T cell receptor (TCR) repertoire via short read transcriptome sequencing (RNA-Seq) has a unique advantage of probing simultaneously TCRs and the genome-wide RNA expression of other genes. However, compared to targeted amplicon approaches, the shorter read length is more prone to mapping error. In addition, only a small percentage of the genome-wide reads may cover the TCR loci and thus the repertoire could be significantly under-sampled.
View Article and Find Full Text PDFMost patients with cancer do not develop durable antitumor responses after programmed cell death protein 1 (PD-1) or programmed cell death ligand 1(PD-L1) checkpoint inhibition monotherapy because of an ephemeral reversal of T cell dysfunction and failure to promote long-lasting immunological T cell memory. Activating costimulatory pathways to induce stronger T cell activation may improve the efficacy of checkpoint inhibition and lead to durable antitumor responses. We performed single-cell RNA sequencing of more than 2000 tumor-infiltrating CD8 T cells in mice receiving both PD-1 and GITR (glucocorticoid-induced tumor necrosis factor receptor-related protein) antibodies and found that this combination synergistically enhanced the effector function of expanded CD8 T cells by restoring the balance of key homeostatic regulators CD226 and T cell immunoreceptor with Ig and ITIM domains (TIGIT), leading to a robust survival benefit.
View Article and Find Full Text PDFThe Programmed Death-1 (PD-1) receptor delivers inhibitory checkpoint signals to activated T cells upon binding to its ligands PD-L1 and PD-L2 expressed on antigen-presenting cells and cancer cells, resulting in suppression of T-cell effector function and tumor immune evasion. Clinical antibodies blocking the interaction between PD-1 and PD-L1 restore the cytotoxic function of tumor antigen-specific T cells, yielding durable objective responses in multiple cancers. This report describes the preclinical characterization of REGN2810, a fully human hinge-stabilized IgG4(S228P) high-affinity anti-PD-1 antibody that potently blocks PD-1 interactions with PD-L1 and PD-L2.
View Article and Find Full Text PDFA central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it.
View Article and Find Full Text PDFEntry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca(2+)]i) elevation. TCR activation triggers increased [Ca(2+)]i and can arrest T-cell motility in vitro. However, the requirement for [Ca(2+)]i elevation in arresting T cells in vivo has not been tested.
View Article and Find Full Text PDFDelta-like ligand 4 (Dll4)-Notch signaling is essential for T cell development and alternative thymic lineage decisions. How Dll4-Notch signaling affects pro-T cell fate and thymic dendritic cell (tDC) development is unknown. We found that Dll4 pharmacological blockade induces accumulation of tDCs and CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg) cells) in the thymic cortex.
View Article and Find Full Text PDFThe proinflammatory activity of T helper 17 (Th17) cells can be beneficial to the host during infection. However, uncontrolled or inappropriate Th17 activation has been linked to several autoimmune and autoinflammatory pathologies. Indeed, preclinical and clinical data show that Th17 cells are associated with several autoimmune diseases such as arthritis, multiple sclerosis, psoriasis, and lupus.
View Article and Find Full Text PDFThe essential role of the Delta-like ligand 4 (Dll4)-Notch signaling pathway in T-lymphocyte development is well established. It has been shown that specific inactivation of Dll4 on thymic stromal cells during early post-natal development leads to a deregulation in T-cell differentiation. However, whether ongoing Dll4-Notch signaling is required for T-cell development in the adult thymus is unknown.
View Article and Find Full Text PDFHost defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC.
View Article and Find Full Text PDFCXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (ΔT) by a gene knock-in approach.
View Article and Find Full Text PDFT cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC.
View Article and Find Full Text PDFShort-lived TCR microclusters and a longer-lived protein kinase Ctheta-focusing central supramolecular activation cluster (cSMAC) have been defined in model immunological synapses (IS). In different model systems, CD28-mediated costimulatory interactions have been detected in microclusters, the cSMAC, or segregated from the TCR forming multiple distinct foci. The relationship between TCR and costimulatory molecules in the physiological IS of T cell-dendritic cell (DC) is obscure.
View Article and Find Full Text PDFT cells survey antigen-presenting dendritic cells (DCs) by migrating through DC networks, arresting and maintaining contact with DCs for several hours after encountering high-potency complexes of peptide and major histocompatibility complex (pMHC), leading to T cell activation. The effects of low-potency pMHC complexes on T cells in vivo, however, are unknown, as is the mechanism controlling T cell arrest. Here we evaluated T cell responses in vivo to high-, medium- and low-potency pMHC complexes and found that regardless of potency, pMHC complexes induced upregulation of CD69, anergy and retention of T cells in lymph nodes.
View Article and Find Full Text PDFThe immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration.
View Article and Find Full Text PDFSpecificity of neurotrophin factor signaling is dictated through the action of Trk receptor tyrosine kinases. Once activated, Trk receptors are internalized and targeted for degradation. However, the mechanisms implicated in this process are incompletely understood.
View Article and Find Full Text PDFThe chemokine receptor CXCR4 is expressed in B cells at multiple stages of their development. CXCR4 function in humoral immunity has not been fully investigated. We have generated gene-targeted mice in which CXCR4 can be selectively inactivated in B cells and have shown that it is required for retention of B cell precursors in the bone marrow.
View Article and Find Full Text PDF