With the advent of single cell/nucleus RNA sequencing (sc/snRNA-seq), the field of cell phenotyping is now a data-driven exercise providing statistical evidence to support cell type/state categorization. However, the task of classifying cells into specific, well-defined categories with the empirical data provided by sc/snRNA-seq remains nontrivial due to the difficulty in determining specific differences between related cell types with close transcriptional similarities, resulting in challenges with matching cell types identified in separate experiments. To investigate possible approaches to overcome these obstacles, we explored the use of supervised machine learning methods-logistic regression, support vector machines, random forests, neural networks, and light gradient boosting machine (LightGBM)-as approaches to classify cell types using snRNA-seq datasets from human brain middle temporal gyrus (MTG) and human kidney.
View Article and Find Full Text PDF