Driver gene mutations can increase the metastatic potential of the primary tumor, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of - a transcriptional effector of TGFβ signaling - which is a hallmark of multiple gastrointestinal malignancies. inactivation mediates TGFβ's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis.
View Article and Find Full Text PDFMetastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium.
View Article and Find Full Text PDFAlthough single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo.
View Article and Find Full Text PDFImmunotherapies that produce durable responses in some malignancies have failed in pancreatic ductal adenocarcinoma (PDAC) due to rampant immune suppression and poor tumor immunogenicity. We and others have demonstrated that induction of the senescence-associated secretory phenotype (SASP) can be an effective approach to activate anti-tumor natural killer (NK) cell and T cell immunity. In the present study, we found that the pancreas tumor microenvironment suppresses NK cell and T cell surveillance after therapy-induced senescence through enhancer of zeste homolog 2 (EZH2)-mediated epigenetic repression of proinflammatory SASP genes.
View Article and Find Full Text PDFThe most prominent homozygous deletions in cancer affect chromosome 9p21.3 and eliminate CDKN2A/B tumor suppressors, disabling a cell-intrinsic barrier to tumorigenesis. Half of 9p21.
View Article and Find Full Text PDFBase editing can be applied to characterize single nucleotide variants of unknown function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors remains challenging. Here, we describe modular base-editing-activity 'sensors' that link sgRNAs and cognate target sites in cis and use them to systematically measure the editing efficiency and precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying sensor editing across >200,000 editor-sgRNA combinations, we provide a comprehensive resource of sgRNAs for introducing and interrogating cancer-associated single nucleotide variants in multiple model systems.
View Article and Find Full Text PDFKRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy.
View Article and Find Full Text PDFColorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids.
View Article and Find Full Text PDFThe adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally suppressed using a doxycycline-regulated shRNA. Apc suppression produces adenomas in both the small intestine and colon that, in the presence of Kras and p53 mutations, can progress to invasive carcinoma.
View Article and Find Full Text PDFThe p53 tumor suppressor can restrict malignant transformation by triggering cell-autonomous programs of cell-cycle arrest or apoptosis. p53 also promotes cellular senescence, a tumor-suppressive program that involves stable cell-cycle arrest and secretion of factors that modify the tissue microenvironment. In the presence of chronic liver damage, we show that ablation of a p53-dependent senescence program in hepatic stellate cells increases liver fibrosis and cirrhosis associated with reduced survival and enhances the transformation of adjacent epithelial cells into hepatocellular carcinoma.
View Article and Find Full Text PDFThe large chromosomal deletions frequently observed in cancer genomes are often thought to arise as a "two-hit" mechanism in the process of tumor-suppressor gene (TSG) inactivation. Using a murine model system of hepatocellular carcinoma (HCC) and in vivo RNAi, we test an alternative hypothesis, that such deletions can arise from selective pressure to attenuate the activity of multiple genes. By targeting the mouse orthologs of genes frequently deleted on human 8p22 and adjacent regions, which are lost in approximately half of several other major epithelial cancers, we provide evidence suggesting that multiple genes on chromosome 8p can cooperatively inhibit tumorigenesis in mice, and that their cosuppression can synergistically promote tumor growth.
View Article and Find Full Text PDFRNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes.
View Article and Find Full Text PDFCellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to noncancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar.
View Article and Find Full Text PDF