Publications by authors named "Janelle R Thompson"

As the threat of COVID-19 recedes, wastewater surveillance - unlike other pandemic-era public health surveillance methods - seems here to stay. Concerns have been raised, however, about the potential risks that wastewater surveillance might pose towards group privacy. Existing scholarship has focused upon using ethics- or human rights-based frameworks as a means of balancing the public health objectives of wastewater surveillance and the potential risks it might pose to group privacy.

View Article and Find Full Text PDF

Wastewater surveillance (WWS) has been globally recognised to be a useful tool in quantifying SARS-CoV-2 RNA at the community and residential levels without biases associated with case-reporting. The emergence of variants of concern (VOCs) have given rise to an unprecedented number of infections even though populations are increasingly vaccinated. This is because VOCs have been reported to possess higher transmissibility and can evade host immune responses.

View Article and Find Full Text PDF

Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau's Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau's cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf.

View Article and Find Full Text PDF

Antibiotic-associated diarrhea (AAD) affects a significant proportion of patients receiving antibiotics. We sought to understand if differences in the gut microbiome would influence the development of AAD. We administered a 3-day course of amoxicillin-clavulanate to 30 healthy adult volunteers, and analyzed their stool microbiome, using 16S rRNA gene sequencing, at baseline and up to 4 weeks post antibiotic administration.

View Article and Find Full Text PDF

Elevated seawater temperatures have contributed to the rise of coral disease mediated by bacterial pathogens, such as the globally distributed Vibrio coralliilyticus, which utilizes coral mucus as a chemical cue to locate stressed corals. However, the physiological events in the pathogens that follow their entry into the coral host environment remain unknown. Here, we present simultaneous measurements of the behavioral and transcriptional responses of V.

View Article and Find Full Text PDF

Worldwide, clinical data remain the gold standard for disease surveillance and tracking. However, such data are limited due to factors such as reporting bias and inability to track asymptomatic disease carriers. Disease agents are excreted in the urine and feces of infected individuals regardless of disease symptom severity.

View Article and Find Full Text PDF

This study addressed whether digital droplet PCR (ddPCR) could improve sensitivity and specificity of human-associated Bacteroidales genetic markers, BacHum and B. theta, and their quantification in environmental and fecal composite samples. Human markers were quantified by qPCR and ddPCR platforms obtained from the same manufacturer.

View Article and Find Full Text PDF

Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO-tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO field, to produce branched alcohols that have potential use as biofuels.

View Article and Find Full Text PDF

Supercritical carbon dioxide (scCO) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO are mainly limited to processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO.

View Article and Find Full Text PDF

This study seeks to understand the general distribution of virome abundance and diversity in tropical freshwater ecosystems in Singapore and the geospatial distribution of the virome under different landuse patterns. Correlations between diversity, environmental parameters and land use patterns were analyzed and significant correlations were highlighted. Overall, the majority (65.

View Article and Find Full Text PDF

Over recent decades several coral diseases have been reported as a significant threat to coral reef ecosystems causing the decline of corals cover and diversity around the world. The development of techniques that improve the ability to detect and quantify microbial agents involved in coral disease will aid in the elucidation of disease cause, facilitating coral disease detection and diagnosis, identification and pathogen monitoring, pathogen sources, vectors, and reservoirs. The genus is known to harbor pathogenic strains to marine organisms.

View Article and Find Full Text PDF

is a free-living filamentous cyanobacterium belonging to the order Oscillatoriales and the family Phormidiaceae, capable of forming bloom in fresh and brackish waters. A unicyanobacterial non-axenic culture dominated by sp. SR001 was obtained from a freshwater reservoir in Singapore.

View Article and Find Full Text PDF

A major challenge for assessment of water quality in tropical environments is the natural occurrence and potential growth of Fecal Indicator Bacteria (FIB). To gain a better understanding of the relationship between measured levels of FIB and the distribution of sewage-associated bacteria, including potential pathogens, in the tropics this study compared the abundance of FIB (Total coliforms and E. coli) and the Bacteroidales (HF183 marker) with bacterial community structure determined by next-generation amplicon sequencing.

View Article and Find Full Text PDF

The identification of phytoplankton species and microbial biodiversity is necessary to assess water ecosystem health and the quality of water resources. We investigated the short-term (2 days) vertical and diel variations in bacterial community structure and microbially derived secondary metabolites during a cyanobacterial bloom that emerged in a highly urbanized tropical reservoir. The waterbody was largely dominated by the cyanobacteria Planktothricoides spp.

View Article and Find Full Text PDF

Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO reservoirs, which serve as analogs for the long-term fate of sequestered scCO , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO -water separators at a natural scCO reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content.

View Article and Find Full Text PDF

A nonaxenic unialgal culture of Limnothrix sp. strain P13C2 was obtained through multiple subculturing of an inoculum obtained from a tropical freshwater lake. Here, we report the genome of P13C2 of 4.

View Article and Find Full Text PDF

Genomes of two filamentous benthic cyanobacteria were obtained from cocultures obtained from two freshwater lakes. The cultures were obtained by first growing cyanobacterial trichome on solid medium, followed by subculturing in freshwater media. Subsequent shotgun sequencing, de novo assembly, and genomic binning yielded almost complete genomes of Oscillatoriales USR 001 and Nostoc sp.

View Article and Find Full Text PDF

A non-axenic unialgal culture containing a Subsection V (Stigonematales) cyanobacterium, Hapalosiphon strain MRB 220, was obtained from a benthic freshwater algal mat through multiple transfers following growth in sterile media. Physiological characterization demonstrated the culture was capable of nitrogen-fixation and production of the off flavor compound 2-methylisoborneol (2-MIB). Total DNA isolated from this culture was sequenced using Illumina HiSeq and de novo assembled into contigs.

View Article and Find Full Text PDF

Cylindrospermopsis is known to be one of the major bloom-forming cyanobacterial genera in many freshwater environments. We report here the draft genome sequence of a tropical Cylindrospermopsis sp. strain, CR12, which is capable of producing the hepatotoxic cylindrospermopsin.

View Article and Find Full Text PDF

Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments.

View Article and Find Full Text PDF

We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times.

View Article and Find Full Text PDF

We report draft genome sequences of Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214 isolated through enrichment of samples from geologic sequestration sites in pressurized bioreactors containing a supercritical (sc) CO2 headspace. Their genome sequences expand the phylogenetic range of sequenced bacilli and allow characterization of molecular mechanisms of scCO2 tolerance.

View Article and Find Full Text PDF

Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2.

View Article and Find Full Text PDF

In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history.

View Article and Find Full Text PDF