Publications by authors named "Janelle N Posey"

The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single-nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IMs) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia.

View Article and Find Full Text PDF

Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to -induced PH. We demonstrate that exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a progressive disease marked by pulmonary vascular remodeling and right ventricular failure. Inflammation and oxidative stress are critical in PH pathogenesis, with early pulmonary vascular inflammation preceding vascular remodeling. Extracellular superoxide dismutase (EC-SOD), a key vascular antioxidant enzyme, mitigates oxidative stress and protects against inflammation and fibrosis in diverse lung and vascular disease models.

View Article and Find Full Text PDF

Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor and contributes to high pulmonary vascular resistance in the developing ovine lung. In experimental pulmonary hypertension (PH), pulmonary expression of tryptophan hydroxylase-1 (TPH1), the rate limiting enzyme in 5-HT synthesis, and plasma 5-HT are increased. 5-HT blockade increases pulmonary blood flow and prevents pulmonary vascular remodeling and PH in neonatal models of PH with bronchopulmonary dysplasia (BPD).

View Article and Find Full Text PDF